InstallKey

Version 5.7

Installation Key
And
Validation Framework

By
LomaCons

May 17, 2015

Table of Contents

1. Product OVEIVIEW......iviiiii ittt ea e e s e e e e 7
FOATUNES ..ttt rans 7
L@ 1 Y1 PP 8
InstallKey ArchiteCtUrecicvuiiiii e e ees 8
2. USE CaSES. . iuuiiuiieuiitiiiiet s st st s a s s e e s e st e e s e e e e a s e e a e ear e enae 10
Performing Validation.......... oo ieeei e e e e e 10
Validation on SUbSEQUENE RUNSuuiiiiiiii e e e e 11
Validation and the Validation Web Service URL.........ccooiiiiiiiiiiiiiin v, 11
Validation ReESUIL COAESiiiueiiiiiiiii e e e e 11
3. Thwarting Attempts to Bypass the Validationccoeevviiiiiiiii e, 13
(@110 =] o] o)/ e RPN 13
Modifying the SUFety File oo eeeei e e e e e 13
Brute FOrCe AtACKS. ... ittt e e e e e 13
REVOKING KBYS...uuiiiiitiiiei ittt e s ettt e et e e et e e e e ers s e e reae s e e e e s e s e anaeeeeesnaseennnnnaees 13
4. InstallKey Installation PrerequisitesScuvuiiiiiiiiiiiniiiriiiin e 14
Internet INformation SEIVICES.......iiiuiiiiii i e 14
The .Net Framework 4.x and WCF HTTP Activation........cccoovuuiiiiiiniiiniiin e, 23
1O]I < OO PPTPTRPN 26
5. InstallKey Installationcceeiiiiiiiiiii 28
Installing INSEAlIKEYceuiieiiiiici e e e e e e e e e 28
Database Creation and SELUPDiiuiiiiiiiiiie s eas 29
Web Application Creation and SetUPcovuviiiiiiiiie e 31
Database ConNeCtion StFiNGcuiiiiiiiiiiiiier e s e e ennas 34
Confirming the Installation..........coocuiiiii i 36
Common Issues and SOIULIONS.vcvuiiirriiiirisrrrs e e e s s e e e s rrnsernnesranaes 37
Upgrading from Prior Releases of InstallKey version 5.Xcccovevueieiiiiiiiinieiinieinieeennns 41
Support for HTTPS (HyperText Transfer Protocol Secured)coovveeviiiiiiiinniiiiineennnns 42
6. Key Management WEDSItEcoiiiiiiiii e 44
o T | T PPN 44
(oTe 1o TN {7 o1 1 u=T 1T o Lo T PPN 45
L0 Y] o L= PPN 45
SYStEM SELINGS. .. cviriiiiiii i 45
1YL= 1 PPN 46
YU (ST 49
7. Client Side Tester and Other Samples.......cccooiiiiiiiiiiiin e 54
@11 Y T [N =T = P 54
WiN FOIMS SamPIE.... e e e e e e aas 54
WWED AP SaMIPIE . it aa 54
Pre POSE SamIPIE . .vu i 54
FAY o TS 1 4]][55
8. Custom Key Properti€scoceiireiiriiieiiiiis s er s re e ern e s e n e 56
Defining Properties 0N @ KEYSet.......c.iiiiriiiiiiiiiiiiiirs e srs e s esn s e s s ean s 56
Assigning Properties t0 KEYSccuviiiiiiiiiiiiii i 58
Retrieving Properties on the Client......... oo e 59
Refreshing the Property Values on the Clientccevviiiiiein e 59

LomaCons InstallKey 2

9. Storing the Local SUrety ..o 61

The ISuretyStorage INterface.......couu i iieeiii e e e 61
1 LS 0= YA o] = o =TT 61
SUretyStorageISOlated. i i i eere e e e e 61
Database SEOrAgEcuuuiiiiirii i e e e e e e e e e e e e e e e e ren e 61
Securing the Surety CONTENTiiiii e e eeas 61
10. Validation without an Internet Connectioncccoiviviiiiiiii i 62
Use Case and SOIULION.uiiruiiiii e s e s s re e e s e s e e re s e rn s e eaesennnsas 62
Security Of the SOIULIONueiieeee e e e e e e e eeas 62
Validation WED Pageoiiieiiiiieiie et 62
=101 o] PP 64
11. Customizing the Validation ProCeSscciieruiiiiiiiniiineiiine s s eene e enn e 65
The Validation PrOCESScuuiiiiiiiiiiii ittt e e e e e e aaes 65
Create and Install a Custom Code ASSEMDBIYceuuiieiiiiiiiieiiie e 66
The PreValidate Methodcc.iiiiiiiiiiiii e 67
The PostValidate Methodcooiuiiiiiii e 67
Adding Data to the Databaseoiiiiiiiiiiiiiii e 68
SAMPIE USE CaSE . evruniiiieiieiiiieies e e erae e e e e e e e e et s s e e rra s e e e ren e s e s eaneeesernseeesrnaneerennn 69
12.Demos and EXPiring THalScuuuiiiiiieiiiii e er e r e e 72
Defining the Trial EXPIration Date.......ccuuviiiieiiiiiiiiiinieeeis e errs e e e ere e 72
QI L0 = PP 72
Evaluating the Expiration Statuscuoiiiiiiiii e 72
Attempting to Bypass the Trial Date........c.ciiuiiiiiiiiii e 73
EXPIration TiMESPAN ...cuuiiiiiiieiieie it s s s s s s s et s e a s e a s e s eae s e s easensenannnns 73
LG (=i 1 = | PP PRUPRRE 74
13.InstallKey Server API......c.iiiiiiiiiiciie et e 75
SeCUrity Of the APIL..... i e s e e e e e e e ea e e eaa s 76
Y= 0 1] o 1= T PPN 76
ADI OO .. e 77
Api Properties and Methods ..o 77
API Errors and EXCEPLiONS.cvu i e 80
14.Key Usage Invalidation ..ot r s er e e 81
INvalidation USE Case......uiiieuiiieiiiiirsiesrisrs s ssnssrs s s senssrn s s snnn s s s s srnnssennsernnsssnnnss 81
Invalidation of @ K&Y USAGEcuuiiuiiiiiiiiiii it s a e e e e e e 81
Result Codes and Error Handlingcoouiiiiiiiiii s 82
Risks of Usage Invalidationcccuoiiiiiiiiiii e 82
15. Custom Identifiers and Matching.........ccucoviiriiiiiiii e 84
The IIdentifierFinder INterfacecovvveiiiiiiiiiin e 84
| o L= 1o 1= g N7 =1 o 11 T T 85
Custom Identifier MatChingc..eooiieiii e 86
16.Web.config Settingsccuiiiiiiiiii i 87
APIRELUINEITOrMESSAgES....uuiiriniieriiiiri i s s e s e 87
ApiKeysetPropertieSLIMItovvieeieeieee e e e e e e ans 87
ApiSureKeyPropertieSLimitocu i 87

LomaCons InstallKey 3

17.Hosted Deployment.......ooiieuiiiiiiie e ers e s e rr e r e e 88

18.Rebuilding the Source Code........oiviuiiiiiiiiiiii e e 89
19.Upgrading from InstallKey 4.2 Or 3.4......cccvvuiiiiiiiiiieeer e 90
U1\ o] = o o PP 90
Individual K&y IMPOrt.....covuiiiiiiie e e e e e e e e enne e e e e ena e eeennn 91
20. Future ENhanCementscuoiiiiiiiiiiiii it rn e e s ae e a e 93
21. Development Methodology and Goals of Version 5........ccccvviviiiniiiiiiinceennnnn. 94
22. Product Support and Contact Information.........c.ccueeiveiiiiiiiiiicice e, 95
Frequently ASKed QUESHIONS......ccuuuiiiieireiieeeiee e e e e e e e e e e ee e e een s e e eennneeees 95
[0T ISTN o] 0T o APPSR 95
ST 1 LT3 Ta Yo I K g1 7] 2 1= 11 T0] o TN 95

LomaCons InstallKey 4

Software License

LomaCons InstallKey software is licensed, not sold. If you do not agree to these terms you cannot utilize
this software and you must destroy all copies.

Custom licensing agreements can be made by contacting LomaCons.

This license governs use of the accompanying software. If you use the software, you accept this license.
If you do not accept the license, do not use the software. This license agreement is valid without the
licensor's signature or the licensee’s signature. It becomes effective upon the licensee's installation or use
of the software.

1. Definitions

The "licensor" is LomaCons.

The "licensee" is the user of this software.

A "computer" is a single physical computer or single instance of a virtual machine.
2. Grant of Rights

The following grants are subject to the terms of this license, including the conditions and limitations in
section 3.

(A) The licensor grants the licensee a non-exclusive, worldwide, royalty-free license to use the software.

(B) The licensee may install the software on no more than four computers. If the licensee has purchased
the source code, the licensee may install the software or derivatives of the software on no more than
twenty-five computers. The licensee may make copies of the software for backup purposes only.

(C) The licensor grants the licensee the right to distribute, under a license of the licensee’s terms, only the
original, unmodified, non-derivative copy of LomaCons.InstallKey.ClientSide.dll and
LomaCons.InstallKkey.Common.dll, only when included in the licensee’s distribution to perform validation of
the licensee’s distribution. If the licensee has purchased the source code, derivatives of these assemblies,
in a similar compiled dll form, may be distributed under a license of the licensee’s terms, only when these
distributed assembly files have been renamed and obfuscated. All other files or derivatives of other files
may not be redistributed.

3. Conditions and Limitations

(A) The software is licensed "as-is." The licensee bears the risk of using it. The licensor gives no express
warranties, guarantees or conditions. The licensee may have additional consumer rights under local laws
which this license cannot change. To the extent permitted under local laws, the licensor excludes the
implied warranties of merchantability, fitness for a particular purpose and non-infringement.

(B) The licensor has the right to terminate this license agreement and licensee's right to use this software
upon any breach by licensee.

(C) The licensee agrees to remove, uninstall and destroy all copies of the Software upon termination of
the License.

(D) The licensee cannot rent or lease the software. The licensee may permanently transfer this license,
provided that the licensee uninstalls and retains no copies, that the licensee transfers all the software,
upgrades, derivatives, media and documentation and that the transferee agrees to be bound by the terms
of this license.

(E) This license does not grant the licensee rights to use the licensor's name, logo, or trademarks.

(F) All right, title, copyrights and interest in the software are owned exclusively by the licensor. The
software is protected by copyright laws and international treaty provisions. The software is licensed to the
licensee, not sold to the licensee. The licensor reserves all rights not otherwise expressly and specifically
granted to the licensee in this license.

(G) If for any reason a court of competent jurisdiction finds any provision of this license, or any portion
thereof, to be unenforceable, that provision of this license will be enforced to the maximum extent
permissible so as to effect the intent of the parties, and the remainder of this license will continue in full
force and effect.

LomaCons InstallKey 5

Other Licenses

Portions of the InstallKey web application make use of components from the ASP.Net Ajax Control Toolkit.
This toolkit is included in the InstallKey distribution and is redistributed in its unmodified, binary form
under the CodePlex New BSD License (BSD) The license below applies only to the AjaxControlToolkit.

New BSD License (BSD)
Copyright (c) 2009, CodePlex Foundation
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this list of conditions and the
following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the
following disclaimer in the documentation and/or other materials provided with the distribution.

* Neither the name of CodePlex Foundation nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

LomaCons InstallKey 6

1. Product Overview

The LomacCons InstallKey framework can be added to any .Net 4.0 or 4.5 based applications to provide
secure server validated software licensing and product installation key validation with installation
counting. InstallKey is functionally similar to the licensing and product activation scheme used by
Microsoft to license their Office and Windows products where you must validate a license key against
both the installation hardware and a licensing server to install and use the software. In addition to this
basic functionality, InstallKey can handle many, many other scenarios and business cases.

Features

InstallKey has the following features.

LomaCons Installkey

Uses 30 character installation keys made up of unambiguous capital letters and numbers. This
helps to make keys easy to read and enter by end users.

Data entry key validation. This helps to catch most data entry errors before validating the
installation key against the server.

Installation key validation against a central server. Validating an installation key against a server
should prove to be harder to bypass, as well as providing a mechanism to invalidate and revoke
rogue keys.

Unique key usage counting tied to the hardware where the software is installed. Key usage
counting is done by comparing machine specific hardware identifiers, or other identifiers as
defined by you.

Written in Visual Studio ASP.Net C# and based on the .Net Framework 4.0. InstallKey can be
used to validate any kind of .Net based application including Win Forms, ASP.Net Web Forms,
ASP.Net MVC and other applications written in either C# or VB.Net. Supports any version of
Visual Studio that supports .Net 4.0 or 4.5; version 2010 or newer.

The database for the server component is Server 2008 R2 or later. The Express, Standard, or
Enterprise editions are supported. The database is used to store the keys on the server. No
database is required with your distributions.

Client side validation against the server only needs to be done once. A tamper-proof surety is
stored on the local system which is specific to the machine and key where the installation occurs.
The surety can be verified again, at any time, without another round trip to the server. The
surety can be stored as a file, a database record, or any other location where a string can be
persisted.

Custom data can be securely passed to and from the server during validation. Custom data is
tamperproof and can be securely retrieved at any time after validation without a round trip to
the server.

Demo and Trial Keys that expire after a given date or timespan after first use. Keyless demos can
also be implemented.

Validation can be performed with or without an internet connection.

Key Invalidation will allow a user to move a key to another installation without consuming
another usage of the key.

Additional interfaces and customization tools that allow InstallKey to be extended and
customized to fit your needs and business requirements.

Overview

In the wild, validation and installation keys will probably not stop a determined hacker; however a good
validation framework should keep your honest customers honest. Validation should be used to keep
legitimate customers from grossly violating the software license agreement, and to prevent casual
copying.

For example, the most common use for software licensing validation scheme is to prevent a customer
from purchasing a single copy of your software and installing it on many, many more machines than
agreed to.

To use InstallKey to add validation in your applications, you will need to reference the
LomaCons.InstallKey.ClientSide.dll from your application. The objects and method calls in this assembly
will perform validation of the installation key and return a result. If the key is valid, your application code
will allow the user to continue.

The client side code performs validation against both the local machine hardware identifiers and a central
server. Thus, you will maintain control over the validity of a customer’s installation key at the time when
the customer validates their key.

InstallKey Architecture

The diagram below shows the components and interactions of the InstallKey framework, and the
descriptions that follow describe the components in more detail.

Your Application:
W Install
InstallKey.ClientSide.dll Key
Surety
InstallKey.Web website
— stallKey.Web websit ~
Internet Validator.svc
Your Custom ——O IPreValidate
Code O IPostValidate
Business Layer
Data Access Layer
\§ J

InstallKey

Database
(SQLServer)

InstallKey Architecture

Your Application

LomaCons InstallKey 8

Your application will reference the InstallKey Client Side dll. The Client Side dll encapsulates the key
validation and surety verification as well as the web service call used to validate a key. Your application is
left to determine when the validation occurs and how the validation results effects the functioning of your
application based on the state of the surety.

InstallKey Surety

The surety is a tamper-proof xml file that contains the information necessary to validate the installation
without having to contact the server. This is the same tamper-proof xml object that is sent to and from
the server during key validation. The surety can also contain a collection of custom properties that you
define and manage.

Internet and Validator.svc

Validator.svc is a .Net WCF web service that is hosted by IIS inside the InstallKey web application. This
service does not require authentication for access and is called by the InstallKey.Client.dll whenever a key
is validated against the server. When the key is validated, a tamper-proof surety is created and sent to
this service for validation. Upon successful validation, the validated tamper-proof surety is returned to
the client and stored locally for future validation.

InstallKey supports the most common customizations out of the box. Optionally you can add your own
custom code to implement the IPreValidate and/or IPostValidate interfaces to provide additional
customization at key validation time. These interfaces will allow you to customize the validation process,
if needed.

InstallKey Database
All data and keys are maintained in a single SQL Server database. SQL Server 2008 R2 or later is required,
and can be installed on the Express, Standard or Enterprise editions.

Caution: Do not lose or drop this database. Doing so will result in all of your customers keys being lost. Once lost, the exact same
keysets and keys cannot be recreated. Always have a backup of your database!

InstallKey.Web Application

The InstallKey web application is the central point for both creating and validating installation keys. This
web application contains both the web service, and visible web pages for maintaining your keysets, keys
and properties.

The web application provides a simple user web based user interface on top of a three tiered internal
architecture. Information a guides for using this application to manage your keysets and keys can be
found in the following chapters.

LomaCons InstallKey 9

2. Use Cases

The use cases that follow are based on this code snippet. This code snippet is an example of the code that
you would call during the startup of your application to determine if the application is ready and validated

for use.

" "

private const string keysetName = "...";

private const string password = "...";

" "

private const string factor = "...";
private const string validationCode = "...";

private const string validationUrl = @"http://.../InstallKeyWeb/Validator.svc";

/17
/17
/17
/17
/17
/17
/17

" "

<summary>

Validates that the application is valdiated. Will validate against
the server if the local surety file is not found or is not valid
</summary>

<returns>

true if the distribution is valid, false otherwise

</return>

public bool Validate() {

ClientSideValidator validator;
string key;
EnumValidateResult result;

// create an instance of the ClientSideValidator object
validator = new ClientSideValidator (_keysetName, password, factor, _validationCode);
validator.SetServiceAddress (_validationUrl) ;
// check to see if the surety already exists and is valid
if (validator.IsValidated) {
return (true); // already validated!
}
key = PromptUserForKey () ;
// check to see if the user typed in the key correctly
if (validator.DoesKeyMatchKeyset (key) == false)
return (false);
// validate the key against the server
result = validator.ValidateAgainstServer (key);
// check the result
if (result == EnumValidateResult.Ok) {
return (true);
}

return (false);

Performing Validation

Validation can be done at any time that is appropriate for your application, but typically it is performed
during the first time your application is run, or at install time. The steps to accomplish this are as follows.

1.

4.
5.

Create an instance of the ClientSideValidator object passing in the keyset information. Set the service
address where the key will be validated against.

Check to see if the application is not already validated, by checking the IsValidated property.

Your code then prompts the user for their 30 character InstallKey. Use the DoesKeyMatchKeyset
method to perform data entry validation and to verify that the key was entered properly by the user.

Call the ValidateAgainstServer method to validate the provided key value against the server.

If the validation was successful, the method returns true; otherwise, returns false.

What just happened here? What is going on inside these properties and methods?

The IsValidated property verified that the application was not already validated. (More about this in the
next use case.) If the application was already validated, then the method returns true, and the application

LomaCons InstallKey 10

is allowed to continue. The application does not need to ask the user for a key and does not need to
contact the server for further validation.

The DoesKeyMatchKeyset method performs data entry validation by confirming that the key matches the
keyset. This does not validate that the user has a valid key; rather, it can only confirm that the user typed
itin correctly. Itis possible, although unlikely, for a user to enter a key that matches the keyset, but is not
a valid key. Itis also possible, for a determined hacker to create a random key that matches the keyset.
This is why the key must always be validated against the server.

The ValidateAgainstServer method performs a few activities. First, it retrieves information that is specific
to the machine, including any network MAC addresses, Hard Drive serial numbers, Processor Identifiers
and BIOS Identifiers. Next, the key and the identifiers are bundled into a surety and sent via a web service
call to the business service web application for validation. Next, the web service validates the uniqueness
of the identifiers relative to the key, and validates that the number of unique validations has not been
exceeded. The resultant validated surety is then sent back to the client. Once back on the client the
validated surety is persisted out to a local file. Along the way, the surety is validated to confirm that it
was not tampered with or modified while traveling over the internet. (More about this local surety file in
the next use case.)

What happens at this point is up to you. If the key is valid, you will typically allow the application to run.
If the key is not valid, the application might terminate, or possibly run in a reduced functionality mode.
How your application behaves when validated or not validated is up to you.

Validation on Subsequent Runs

After the application has been initially validated against the server, a surety file will have been created
and stored on the local machine. The surety is a small XML file that contains all the information collected
during the initial validation, including the installation key and the machine specific identifiers.

Additionally, the surety can contain custom information in a property collection that is securely embedded in the surety. (See the
section on sending custom data to/from the server for more information.)

The IsValidated property is used to validate that the application is already valid by comparing the
information in the surety file and the current machine identifiers. The current machine specific
information is found, and compared to the values stored in the surety file. If the values are largely
different, the validation will fail and the IsValidated property will return false. If the values are the same,
the IsValidated property will return true.

Notice that it is not necessary to validate against the server each time you want to verify that the
validation has been successful. This is because the surety file is tamper-proof and includes the machine
specific information at the time it was validated against the server. Therefore we can assume that the
application is valid as long as the surety was not compromised, and the machine specific information has
not changed.

Validation and the Validation Web Service URL

When the ClientSideValidator object validates an installation key against the server, it will connect to your
predefined web service URL. This URL is a WCF based web service that is defined in the InstallKey web
application config file. The service is hosted in IIS inside the InstallKey web application.

The ValidateAgainstServer method can be called any time that you want to refresh or revalidate the key
against the server. Aslong as the unique identifiers are the same, the surety is refreshed and usage count
will not be incremented.

Validation Result Codes

In the sample code snippet above, the returned result is compared against EnumValidationResult.Ok to
indicate a Boolean result. This is acceptable in a simple scenario; however, you might want to use the

LomaCons InstallKey 11

enumeration result to provide additional feedback to the user or other handling specific to your
application. Below is the description of the result codes, what they are indicative of, and why they might
occur.

EnumValidationResult.Ok

This value indicates that the validation against the server was successful and the identifiers were
successfully stored on the server. If this is the first validation using this set of unique identifiers, then the
identifiers will not be found on the server and the usage count was increased. If matching identifiers
were found on the server, the usage count will not be increased.

EnumValidationResult.Violation

This value indicates that the key was found on the server; however, this attempt to validate failed
because this validation is a new unique validation that would exceed the limit allowed for the key. This
unique usage of this key would have exceeded the maximum usages allowed for the key.

EnumValidationResult.InvalidKey
This value indicates that the key was not found on the server and does not exist on the server. Typically
this happens because it was deleted on the server.

EnumValidationResult.Revoked
This value indicates that the key was found on the server; however, the key was revoked and is no longer
valid.

EnumValidationResult.PreValidateFailure

This value indicates that the key was found on the server; however the custom pre validation code did not
allow the key validation to succeed. This value is only possible when a custom pre validate handler has
been implemented. See the chapter on Customizing the Validation Process for more information.

LomaCons InstallKey 12

3. Thwarting Attempts to Bypass the Validation

There are some common scenarios that your users may attempt to try to bypass the key validation and
surety verification process. Because the surety file is tamper-proof and the contents of the surety are tied
to the specific machine where it was validated and installed, InstallKey can successfully prevent these
attempts.

Casual Copying

Casual copying occurs when a user copies your application to another machine, either intentionally or
unknowingly. Typically the user will copy the entire set of application files including the surety.

Attempting to copy the surety file to another machine will cause the validation to fail on the other
machine, but it will continue to work on the original source machine. This is because the machine specific
information on the second machine will not match the information stored in the surety file. In this case
the IsValidated property will return true on the original machine, but will return false on the second
machine.

Modifying the Surety File
A user may attempt to bypass the surety, or change its contents, by modifying the surety file itself.

To prevent this, the surety file contains a validation code that is used to validate and verify that the surety
file content has not been tampered with. Attempting to modify the surety file contents or the validation
code will cause the surety file to become invalid. In this case, the IsValidated property will return false.

Brute Force Attacks

Every system can be bypassed by a brute force attack where a rogue user tries repeatedly to enter valid
keys. InstallKey is no exception; however, precautions can be taken to limit this in both your code and by
InstallKey.

First, even if a rogue user entered a random key that that matches the keyset, your code should always be
written such that it still has to pass the server validation. The total number of unique keys is so large that
the probability of the same key being generated by the server and randomly selected by the rogue user is
infinitesimally small, the key most likely will not exist on the server and the validation will fail.

Second, your application can prevent a brute force attack by limiting the number of times a user can
attempt to enter an invalid key. Your code can be written such that multiple attempts to validate with an
invalid key will cause the application to terminate, thus making it quite inconvenient to enter many keys
repeatedly.

Third, even if a rogue user manages to enter a valid key that also exists on the server, the key can be
revoked at any time to prevent further usage attempts.

Revoking Keys

Keys are intended to be used multiple times by a single customer up to the violation limit. There’s not
much you can do to prevent a key from being shared or getting out in the wild. But InstallKey does
provide a key revocation mechanism to handle this scenario.

By revoking the key, you effectively disable the key at the server. All further attempts to validate a
revoked key against the server will always fail, regardless of the number of times the key has been used.
What this does is prevent any future validations with that specific key to succeed.

LomaCons InstallKey 13

4. InstallKey Installation Prerequisites

The InstallKey web application requires the installation and configuration of Microsoft Windows
components and features. These features are typically not installed or activated when the Windows
Operating System is installed. However, they can be easily added using the Add/Remove Programs applet
or Server Manager Tools in the Windows Control Panel.

e Internet Information Services
e .Net Framework 4.0 or later
e SQL Server 2008R2 or later; Express or greater edition

Specific and required components of these features are defined below, along with any notes about any
differences for the different major versions of the Windows operating system. In general, if you are
already developing applications with Visual Studio, these components are likely already installed.

Please note that IIS is not available in the Starter, Home or Basic editions of Windows. Because of this, the InstallKey web server
components cannot be installed on these editions. Also note that this limitation applies only to the InstallKey Server. The
LomacCons.InstallKey.ClientSide.dll and LomaCons.InstallKey.Common.dll files that you include with your application can run on any
edition of Windows.

Internet Information Services

IIS must be installed on your web server prior to installing InstallKey. IS is included with various editions
of the Windows desktop and server operating systems, but is not installed by default. It can be added any
time from the Add/Remove Programs or Server Roles applet in the Windows Control Panel.

Once IIS is installed, installation and support for ASP.Net 4.x features in 1IS must also be enabled.

Installing IS on Windows Server 2012 R2
The IIS settings can be found in Server Manager. If you do not yet have IIS installed, follow these steps.

1. Open Control Panel and select Administrative Tools.
2. Open Server Manager, and select Local Server.

3. Scroll down to the Roles and Features section.

LomaCons InstallKey 14

i Server Manager

Manage Tools View

IEZ% Dashboard

ROLES AND FEATURES

ii All Servers All roles and features | 14 total TASKS ¥

ii File and Storage Services P Fiier o \@' - =
Server Name Name Type Path
WIN-FGVLIPDK4R2 WoW6d Support Feature WoW64 Support ~
WIN-FGVLIPDK4R2 Windows PowerShell Feature Windows PowerShell | =
WIN-FGVLIPDK4R2 Windows PowerShell ISE Feature Windows PowerShell\]
WIN-FGVLIPDK4RZ Windows PowerShell 4.0 Feature Windows PowerShell\|
WIN-FGVLIPDK4R2 .NET Framework 4.5 Features Feature .NET Framework 4.5 F¢
WIN-FGVLIPDK4R2 .NET Framewaork 4.3 Feature MET Framework 4.5 Fe
< [T > -

Server Manager - Roles and Features

4. From the Roles and Features Task drop down, choose Add Roles and Features. This will start the Add
Roles and Features Wizard.

5. In the Server Roles list choose Web Server (1IS). Approve the addition of any required features.

[Add Roles and Features Wizard = |[=] %
Select server roles R,
X
Select one or more roles tptectall - .
[Add Roles and Features Wizard -
Roles

Add features that are required for Web Server (11S)7?

Server Roles

The following tools are required to manage this feature, but do not
have to be installed on the same server,
4 Web Server (lIS)
4 Management Tools

[Tools] 115 Management Console

Include management tools (if applicable)

| Add Features ‘ | Cancel ‘

Server Manager Roles

6. Click the Next button to advance the wizard to the Web Server Role Services.

LomaCons InstallKey 15

7. Windows will have preselected the minimum required IIS settings. In addition to the preselected
settings, you also need to select the Application Development | ASP.Net 4.5 checkbox. Selecting this
check box will also include other required role services. Select the checkbox, and accept the

additional role services.

Select role services

DESTIMATION SERVER
GOSHEM

x

Select the role services to install for Web Server (115)

Rele services

Role Services

Add Roles and Features Wizard

Add features that are required for ASP.NET 4.57

You cannot install ASP.NET 4.5 unless the following role services or
features are also installed.

4 NET Framework 4.5 Features
ASP.NET 4.5
4 Web Server (lI5)
4 Web Server
4 Application Development
ISAPI Extensions
ISAPI Filters
.NET Extensibility 4.5

Include management tools (if applicable)

‘ Add Features | ‘ Cancel |

= Add Roles and Features Wizard = |[=] %2

IIS Role Services with ASP.Net Selected

8. Click the Next Button to complete the wizard and install IIS.

Installing IS on Windows Server 2008 R2

The IIS settings can be found in Server Manager. If you do not yet have IIS installed, follow these steps.

1. Open Control Panel and select Administrative Tools.

2. Open Server Manager and select the Roles Node in navigation tree.

3. Click the Add Roles Link to start the Add Roles Wizard.

LomaCons InstallKey

16

F:: Server Manager

File Action Wiew Help

5= H

T Server Manager (BRADFORD]

ot Roles
ﬁ;_'] Features

m Diagnastics
it Corfiguration

& Storage

H=E |

‘Wigw the health of the roles installed on wour server and add or remove roles and Features,

-~ Roles Summary E Raoles Summary Help
Roles: 0 of 17 installed S add Roles

T Remove Roles

%:“ Last Refresh: Today at 3:28 PM Configure refresh

Server Manager - Roles

4. Inthe Server Roles list choose Web Server (l1S)

LomaCons InstallKey 17

Add Roles Wizard

Web Server (1151

Role Services
Confirmation
Progress

Results

Select one or more roles to install on this server.

Roles:

|: Active Directory Certificate Services

|: Active Directory Domain Services

|: Active Directory Federation Services

[Active Directory Lightweight Direckory Services
|: Active Directory Rights Management Services
[application Server

l: DHCP Server

l: DNS Server

l: Fax Server

[] File Services

’: Hyper-4

[Metwork Policy and Access Services

’: Print and Document Services

l: Rermote Deskiop Services

])
[] windows Deployment Services
[windows Server Update Services

[More about server roles

Description:

Web Server (T15) provides a reliable,
manageable, and scalable Web
application infrastructure.

< Prewious | Mexk = I Iniskall Cancel

Select Web Server (IIS) Role

5. Click Next to see the Role Services list. Windows will have preselected the minimum required IIS
settings. In addition to the preselected settings, you also need to select the Application Development
| ASP.Net checkbox. Selecting this check box will also include other required role services. Select the
checkbox, and accept the additional role services.

LomaCons InstallKey

18

Add Role Services E

Add role services required for ASP.NET?

You cannot ingtall ASP.HET unlezs the required rale services are also installed.

Rale Services: Dezcription:
= ‘Weh Server [[15] Wwieb Server [IIS] provides a reliable,
= ‘web Server manageable, and scalable ‘web application
irfrastructure.

= Application Developrment
ISAPI Filkers
|54FI Extenzsions
MET E=tensibility

Add Required Raole Services I Cancel |

'3:1:3' Why are thege role zervices required? y
I

Required Roles Services Prompt

Add Roles Wizard E

Select Role Services

Before You Begin Select the rale services to install For YWeb Server (I15):
Server Roles Role services: Description:
web Server (1151 = [wWeb Server o &SP.MET provides a server side object
—! oriented programming entviranment
=@ Common. HTTP Features for building Web sites and Web
P—— [+/] static Cantent applications using managed code,
Hnrrmation [¥] Default Document ASPLMET is r_nc-t simply a nevt Yersion
Progress [¥] Directary Browsing of 43P, Having been entirely re-
architected to provide a highly
Results IZ HTTP Errors " - .
o produckive programming experience
L] HTTP Redirection based on the MET Framewaork,
[webDaW Publishing ASP.MET provides a robust
= [E application Development | infrastructure for building web
[l =5 rET applications,
[] .MET Extensibilicy
[] asp
[car

[+/] 15API Extensions
[+/] 15APT Filters
[] server side Includes
= [E Health and Ciagnostics
[/] HTTP Logging
[] Logging Tools
’Z Request Monitor
[Tracino ll

Miore about role services

£ Previous | Mext = I Iniskall Cancel

IIS Role Services with ASP.Net Selected

6. Click the Next Button to complete the wizard and install IIS.

Installing 1IS on Windows 8.1
The IIS settings can be found in Windows Control Panel.

1. Switch to the desktop

1. Open the Windows Control Panel

LomaCons InstallKey 19

2. Open the Programs and Features applet
3. Click the Turn Windows Features on or off link

4. Inthe Windows Features dialog, enable Internet Information Services. This will enable the base
installation of 1IS.

Windows Features = =

Turn Windows features on or off (7]

To turn a feature on, select its check box, To turn a feature off, clear its
check box. A filled box means that only part of the feature is turned on.

|] . MET Framework 3.5 (includes [MET 2.0 and 3.0} ~
| @ [=] |, .MET Framework 4.5 Advanced Services

, Active Directory Lightweight Directory Services

, Hyper-¥

. Internet Explorer 11

Y

, Internet Information Services Hostable Web Core

, Legacy Components

= =

B #

. Media Features
., Microsoft Message Queue (MSMO) Server
, Metwork Projection

Print and Document Services

=
Oymmcym oy

#l

Cancel

Enabling Internet Information Services

5. Expand the Internet Information Services node.
6. Expand the Application Development Features node.

7. Select the ASP.Net 4.5 option. This will auto select a few other required IIS features.

LomaCons InstallKey

8.

Windows Features = K

Turn Windows features on or off (7]

To turn a feature on, select its check box. To turn a feature off, clear its
check box. A filled box means that only part of the feature is turned on.

[=] | Web Management Tools ~
= (=] | World Wide Web Services
= [m] |, Application Development Features

, Server-5ide Includes

, WebSocket Protocol

[m] || Common HTTP Features
[»] |, Health and Diagnostics

[w] || Performance Features

[m] | Security
] Internet Informatinn Services Hostahle Weh Core

Cancel

Enabling ASP.Net Functionality in IIS

[.MET Extensibility 3.5
| NET Extensibility 4.5
[!, Application Initialization
[l ASP

[}, ASP.MET 3.5

ficr s

11 cal

, 1SAP| Extensions

, 1S4P| Filters

[]

L]

Click Ok to save the settings and install IIS.

Installing IS on Windows 7
The IIS settings can be found in Windows Control Panel.

1.

2
3.
4

Open the Windows Control Panel
Open the Programs and Features applet
Click the Turn Windows Features on or off link

In the Windows Features dialog, enable Internet Information Services. This will enable the base
installation of IIS.

LomaCons InstallKey

21

Windows Features E' @

Turn Windows features on or off (7]

To turn a feature on, select its check box. To turn a feature off, clear its
check box. A filled box means that only part of the feature is turned on.

L3

[7] . Games
J Indexing Service
, Internet Explorer 8

if Internet Information Services

. Internet Information Services Hostable Web Core

m

2]

, Media Features £
. Microsoft .MET Framework 3.5.1

, Microsoft Message Queue (MSMQ) Server

. Print and Document Services

HEEE
O = W [W < O 6 = O

, Remote Differential Compression
RIP Listener

| ok || concel |

Enabling Internet Information Services

5. Expand the Internet Information Services node.
6. Expand the Application Development Features node.

7. Select the ASP.Net option. This will auto select a few other required IIS features.

LomaCons InstallKey

E‘L' Windows Features E'@

Turn Windows features on or off (2]

To turn a feature on, select its check box. To turn a feature off, clear its
check box. A filled box means that only part of the feature is turned on.

= . Internet Information Services -
5[] |, FTP Server
- . Web Management Tools
= ; World Wide Web Services
= , Application Development Features

m

| NET Extensibility
[l asp

oo e

Ol cal

) ISAPI Bxtensions

| ISAPI Filters

[]) Server-Side Includes

T ; Common HTTP Features
¥ . Health and Diagnostics
+ , Performance Features
T | Security
[] L\ Internet Information Services Hostable Web Core

0] 4 l l Cancel

Enabling ASP.Net Functionality in IIS

8. Click Ok to save the settings and install IIS.

The .Net Framework 4.x and WCF HTTP Activation

The Windows 7 and Windows 2008R2 operating systems do not include the .Net framework 4.0, and it
will need to be installed separately if not already installed on the machine where you are installing the
InstallKey server. This framework is available as a free download from Microsoft.

Conversely, Windows 8.1 and Windows Server 2012R2 include .Net 4.x as part of the operating system
installation. However, on these operating systems additional features of the framework must be enabled
for the proper functioning of the Installkey WCF Validation web service.

Because InstallKey uses WCF over HTTP for confirming validations, the HTTP Activation must be enabled in
some Windows operating systems. Please confirm that the .Net 4.x WCF Services has the HTTP Activation
enabled. This setting is required for InstallKey to function properly and can be found inside control panel
in Windows. The location of this setting is in a slightly different location in each version of Windows.

Note that version 4.5 or newer of the .Net Framework is backwards compatible with the .Net Framework 4.0. In the diagrams and
notes below you may see references to version 4.5, however InstallKey will function with either version of the framework.
Windows Server 2012 R2

The WCF HTTP Activation setting can be found in Server Manager. If you do not yet have HTTP Activation
enabled, follow these steps.

1. Open Control Panel and select Administrative Tools.

LomaCons InstallKey 23

2. Open Server Manager, and select Local Server.

3. Scroll down to the Roles and Features section.
= Server Manager == -
Manage Tools
‘ L4 m > | [l
IE= Dashboard
ROLES AND FEATURES
ii All Servers All roles and features | 14 tota
BE File and Storage Services I Fiter D E‘/‘ - -
Server ha"ns MName Type Path
WIN-FGVLOPDK4R2 WoW6d Support Feature WoWé4 Support -
WIN-FGVLOPDKAR2 Windows PowerShell Feature Windows PowerShell | =
WIN-FGVLIPDK4R2 Windows PowerShell ISE Feature Windows PowerShell\]
WIN-FGVLIPDK4R2 Windows PowerShell 4.0 Feature Windows PowerShell\|
WIN-FGVLIOPDKAR2 .MET Framework 4.5 Features Feature .NET Framework 4.5 F¢
WIN-FGVLOPDKAR2 MNET Framework 4.5 Feature .MET Framework 4.5 F¢
L4 L[} > &
Server Manager - Roles and Features
4. From the Roles and Features Task drop down, choose Add Roles and Features. This will start the Add
Roles and Features Wizard.
5. Click Next to Advance to the Features List.
6. Inthe Features list expand the .Net Framework 4.5 Features node. Under that, expand the WCF
Services node.
7. Check the checkbox for HTTP Activation. If the Add required features dialog appears, accept the

addition of the required additional features.

LomaCons InstallKey

24

Wl

Add Roles and Features Wizard = =] 22

Select features

DESTIMATION SERVER
GOSHEMN

X

Select one or more features to install on the selected server.

Features

[] .NET Framework 3.

4 [H] NET Framework 4.

{NET Framewer| You cannot install HTTP Activation unless the following role services
ASP.NET 4.5 (In| or features are also installed.

4 [H] WCF Services [

[MRHTTE Activa

Add features that are required for HTTP Activation?

4 Windows Process Activation Service
Configuration APls
Process Model

[] Background Intellig
[] BitLocker Drive Eng
[BitLocker Network
[] BranchCache

Include management tools (if applicable)

‘ Add Features | | Cancel |

Server Features

8. Click the Next Button to complete the wizard to enable .Net 4.5 HTTP Activation.

Before You Begin
Installation Type
Server Selection

Server Rolas

Features

Confirm installation selections =

DESTIMATION SERVER

To install the following roles, role services, or features on selected server, click Install.

[[] Restart the destination server automatically if required

Optional features (such as administration tools) might be displayed on this page because they have
been selected automatically. If you do not want to install these optional features, click Previous to clear
their check boxes.

NET Framework 4.5 Features
WCF Services
HTTP Activation

Windows Process Activation Service
Configuration APls

Process Model

Export configuration settings
Specify an alternate source path

[<previous || met> | [install | [Cancel

Confirmation To Install and Activate WCF HTTP Activation

Windows Server 2008 R2

LomaCons InstallKey

25

The .Net Framework 4.0 is not included with Windows 2008 R2 but it can be downloaded from Microsoft’s
website. If you are installing both IIS and .Net 4.x, install IIS first, then the .Net Framework. It is
recommended that you download and install the most recent version of the 4.5 framework

Windows 8.1
The HTTP Activation setting can be found in Windows Control Panel.

1. Switch to the desktop

Open the Windows Control Panel

2

3. Open the Programs and Features applet

4. Click the Turn Windows Features on or off link
5

In the Windows Features dialog, enable HTTP Activation and click OK
=] Windows Features - O

Turn Windows features on or off (7]

To turn a feature on, select its check box, To turn a feature off, clear its
check box. A filled box means that only part of the feature is turned on.

[m] || MET Framework 3.5 (includes .MET 2.0 and 3.0) ~
= [=] |, .MET Framework 4.5 Advanced Services
| ASP.NET 4.5

= [w] || WCF Services
Y770 scivaion
, Message Cueuing (MSMO) Activation
, Mamed Pipe Activation
, TCP Activation
, TCP Port Sharing

[. Active Directory Lightweight Directory Services
(14 Hyper-v

[+#] Internet Fenlorer 11 e

Cancel

Windows 8.1 Features - .Net Framework HTTP Activation

OO0

Windows 7

The .Net Framework 4.0 is not included with Windows 7 but it can be downloaded from Microsoft’s
website. If you are installing both IIS and .Net 4.x, install 1IS first, then the .Net Framework. It is
recommended that you download and install the most recent version of the 4.5 framework.

SQL Server

The InstallKey web application must have access to an Enterprise, Standard or Express edition of SQL
Server 2008 R2 SP2 or newer. The SQL Server instance does not have to be on the same machine.
Administrative or sa rights to the SQL Server instance will be needed only to create the database and
database login.

Once the database has been created, a login with minimal security access rights can be used for the
connection to the database from the InstallKey application. A SQL script to create this login with minimal
access is provided.

LomaCons InstallKey 26

Mixed Mode Authentication

Often the easiest way to configure application level access to the database is by using a SQL login and
password. This type of login in is stored securely in SQL Server.

If SQL Server was installed with the default authentication setting, then Mixed Mode will likely be
disabled. To enable Mixed Mode after SQL Server has been installed, change the setting on the SQL

Server instance properties.

1. Open SQL Server Management Studio and connect to your database server instance

Right click on the server instance and choose Properties

2
3. Inthe properties dialog, choose the Security page
4

Confirm that the Server Authentication setting is set to SQL Server and Windows Authentication

mode.

Uz
File Edit View d

= Selecta page
gl D 1 General

Object Explorer 2 Memory
c ctv @i i 2 Processors
i S E s |
= |8 (localhsg |#7 Connections
[Datab | # Database Settings
3 Securi g ;:dva.nc.ed
I_J SENEI’ =] SmMmIssions
1 Replig
3 Mana
‘Connection
Server:
{local\SCQLExpress
Connection:
Wallace'Locallones
2 View connection properties
Progress
Ready

Changing the SQL Server Authentication Mode

hMicrocoft SNl Carnsar Mananamant Studio

Server Properties - WALLACE\SQLExpress

S Script - L’j Help

Server authentication
() Windows Authertication mode

(®) SQL Server and Windows Authentication mode

Login auditing

) None

(®) Failed logins oy

() Successful logins only

() Both failed and successful logins

Server proxy account
[[] Enable server proxy accourt

Options

["] Enable C2 audi tracing

[[] Cross database ownership chaining

SQL Server Integrated Windows Authentication
Coming Soon! — Application access to SQL Server using Windows Authentication will require changes to
the IIS Application Pool settings in addition to creating a corresponding windows login in SQL Server and
changes to the connection string in the web.config file.

Documented support for this configuration will be added in a future release of InstallKey, however if you
are knowledgeable about setting this up, it should be possible with this release of InstallKey.

LomaCons InstallKey

27

5. InstallKey Installation

InstallKey consists of a few different components that work together to provide key creation, data storage
and key validation. These components were created with 100% .Net managed code and common
Microsoft development tools and technologies.

e The client side components are in two dlls, LomaCons.InstallKey.ClientSide.dll and
LomacCons.Installkey.Common.dll. These two dlls are referenced by your application to provide
the validation functionality and may be redistributed only with your application.

e The server side component is a web application called InstallKkeyWeb. This web application is the
central point for managing and validating the keys. It contains both the key administration web
pages and the validation service. The Web based Ul allows you to administer the InstallKey
server to create keysets, keys, revoke keys, change install count limits and more.

e A SQL Server database. This database holds all the information about the installation keys. You
should always have a backup of this database. Dropping or losing this database will cause all of
your keys to become invalid.

e Sample applications. The sample applications written in C# or VB.Net provide examples of how
to call and use the client side code.

Installing InstallKey

Setup and configuration of InstallKey is straight forward and simple. If you have built and deployed web
applications based upon the Microsoft .Net framework, you will have no trouble with the installation.
Alternatively, if you have never installed a web application before, the setup is just as easy by following
the guide and steps below.

InstallKey is written in 100% .Net managed code and follows Microsoft’s guidelines for application design
and deployment. There are no complex or mysterious setups or tools. In general, the process is to create
the database, create the website in IS, and configure the database connection string.

To begin, download the current release of InstallKey from http://www.lomacons.com. This zip file will
contain a collection of zip file packages.

e Database.zip — REQUIRED — This zip file contains the database script files. These files will be run
to create and update the database schema and fixed content. A database login script file is also
included.

e InstallkeyWeb.zip — REQUIRED — This zip file contains the deployment files for the InstallKey web
application. The application is already compiled, and the files will be copied to your IIS server file
system.

e (lientSideBinaries.zip — REQUIRED — This zip file contains the LomaCons.InstalllKey.ClientSide.dll
and LomaCons.Installkey.Common.dll files. These are the two .Net assemblies that you will need
to include as references in your application project file. You also will need to redistribute these
files with your application. The client side libraries do not require any additional Windows
features other than the .Net Framework 4.0 for normal client side operation.

e C(lientSideTester.zip — This zip file contains optional content. This executable file can be used to
validate a key against your server, can be used to confirm that you have installed your server
properly and that you can connect to the validation service endpoint. The source code for this
application is included in the samples.

e ClientSideSamples.zip — This zip file contains optional content. This zip file contains a number of
Visual Studio projects written in C# or VB.Net that are real working samples that demonstrate
how to use the client side objects, methods and properties.

LomaCons InstallKey 28

e InstallKeyDevGuide.pdf — This pdf file contains full and complete documentation about
InstallKey. (You are reading this file now.)

e QuickStartGuide.pdf — This pdf file contains condensed installation instructions.

e ReleaseNotes.pdf — This pdf file contains the full revision history of InstallKey from version 1.0
through the current release. This includes lists of new features, obsolete features, removed
features, breaking changes and bug fixes.

Database Creation and Setup
Follow the steps below using SQL Server Management Studio (SSMS) to create the InstallKey database.

1. Create a new empty database. Enter InstallKey for the database name, and leave the defaults for all
other options and settings.

A Microsoft SQL Server Management Studio = =

File Edit View Debug O New Database - o
iG] v 5 e @l || Selectapage & st + [P e @

A General ‘; = Lj =

Object Explorer 127 Options

Connect~ 3¢ 3 m %7 Filegroups Database name: |InstaIIKey1 |

= Lij (local)\SOLEXPRESS Owner: <default>

= C@ Databases 4

3 System Datal
3 Security

Database files:

3 Server Objects
1 Replication
[Management

Logical Name File Type Filegroup Initial Size (MB) Autogrowth / Maxsize
InstallKey ROWS... PRIMARY i By 1 MB, Unlimited
InstallKey_log LOG Mot Applicable By 10 percent, Unlimited

Connection

Server:
(ocal\SQLEXPRESS

Connection:
Wallace'LocalJones

34 View connection properties

Progress
Ready < B4
Add Remove

<

Corce

Database Creation

2. Unzip the Database.zip file

3. Execute the InstallKeyDatabase.sql script file on the InstallKey database. This will create the database
schema and load the initial fixed content. As this script executes, you should see each step in the
process complete in the results pane. Confirm that the script ran successfully and without error by
reviewing the contents of the results pane.

LomaCons InstallKey 29

"z InstallKeyDatabase.sql - (local)\SQLEXPRESS.InstallKey (Wallace\Locallones (52)) - Microsoft SQL Server M. = =

File Edit View Query Project Debug Tools Window Help
Pl Gl | A NewQuey [05 i (| & <2]9 - © - S5 || z

"gﬂi”lnstalll(e}r v|| ! Execute B Debug ¥ o 30 =l | 37 Uy e =
Objec Eporer nslieyDatsbose.ceocotones 62) < I
Connect~ 3 3 w 7 7] " =|/* Copyright ©2887-2814 LomaCons, SP ES
— I
E ld (local)\SQLEXPRESS (SQL Se // All rights are reserved. Reproduction or transmissiocn in whole or in part,
= [Databases // in any form or by any means, electronic, mechanical or otherwise, is
3 System Databases // prohibited without the prior written consent of the copyright owner.
| InstallKey 17
[Security */
[Server Objects
[Replication
(o]

[Management

—ISET NOCOUNT ON
1W00% -

3 Resuts
Creating EnumRight records
Creating EnumRight records Complete
Creating Admin LoginUser record
Creating Admin LoginUser record Complete
Creating Service LoginUser record
Creating Service LoginUser record Complete
Adding Fixed Content to Database Version 5.1.13.8 Complete
Dropping Views
Dropping Views Complete
Creating Views
Creating Views Complete
InstallKey Database Update Complete

100% -

@ Query executed... (local\SQLEXPRESS (12.0 RTM) | Wallace\Locallones (52) | InstallKey 00:00:00 | 0 rows

Ready Ln1 Col 1 Ch1 INS

Database Schema Creation

4. Execute the InstallKeyUser.sql script on the InstallKey database and confirm that the script ran
successfully and without error by reviewing the contents of the results pane. This will create a SQL
login with a password and associate the login with the InstallKey database. This login will be used to
connect to the database from the web application. As a security best practice, this login is configured
with minimal access constraints such that it has access to only the InstallKey database with
datareader, datawriter and execute permissions.

LomaCons InstallKey 30

"z InstallKeyUser.sql - (local)\SQLEXPRESS.InstallKey (Wallace\Locallones (53)) - Microsoft SOL Server Manag.. = ‘:'
File Edit View Query Project Debug Tools Window Help

Pl) D el | A NewQuery [i (| & a9 - - S5 g b :
Eé{ﬂi”lnstal”(e}r v||TE)(ecu‘te b Debug n‘/gsl‘:ﬂgllg‘“m@| ﬁ@;j|;2| e =
Otict e x [T
Connect~ 3 3 w 7 7] " =|/* Copyright ©2887-2814 LomaCons, SP ES
= 1
&1 U3 (local\SQLEXPRESS (SQL Se // All rights are reserved. Reproduction or transmissiocn in whole or in part,
& [Databases // in any form or by any means, electronic, mechanical or otherwise, is
[System Databases // prohibited without the prior written consent of the copyright owner.
| InstallKey 17
3 Security *f
[Server Objects
[Replication
J,l’*

[Management

// The script below can be used to create a SQL Login that has access to the
// InstallKey Database. The login created below will be used by the
// web applciation to connect te the database.

100% -

_'_1 Results
Creating Server Login
Creating Server Login Complete
Creating Database User
Creating Database User Complete
Adding Roles to Database User
Adding Roles to Database User Complete

100% -
@ Query executed... (local\SQLEXPRESS (12.0 RTM) | Wallace\Locallones (53) | InstallKey 00:00:00 | 0 rows

Ready Ln1 Col 1 Ch1 INS

Database Login Creation

Web Application Creation and Setup

To create the InstallKey web application, follow these steps. These steps assume a default installation of
[IS with the Default Web Site and a default installation of the .Net Framework 4.0 with the ASP.Net v.40
application pool.

1. Create the InstallkeyWeb folder on the file system in the C:\inetpub\wwwroot folder.

LomaCons InstallKey 31

A= C\inetpub\wwwroot
Home Share View - 0
@ * T . » ThisPC » Local Disk (C:) » inetpub » wwwroot v O Search wwwroot pel
-~ - . -
< Favorites Mame Date modified Type Size
Bl Desktop .. aspnet_client 6/1/2014 &:11 AM File folder
& Downloads [a2] iis-83.png 6/1/2014 6:11 AM PNG File 97 KB
=] Recent places | =] iisstart.htm 6,/1/2014 6:11 AM HTM File TKB
| | InstallKeyWeb 6/1/2014 7:40 AM File folder

) Homegroup

1M This PC
m Desktop
| Documents
4 Downloads
Wt Music
=| Pictures
B Videos
i, Local Disk (C:)
5 Shared Folders (4 w

4 items 1 itemn selected

Create the InstallKeyWeb folder

2. Unzip the InstallkeyWeb.zip file.

3. Copy the files and folders from the zip file into C:\inetpub\wwwroot\InstallKkeyWeb

I = | Chinetpub\wwwroot\InstallKeyWeb
Home Share View v @
@ * 1 1 <« inetpub » wwwroot » InstallKeyWeb v & Search InstallKeyWeb)
b g Desktop A Name : Date modified Type Size ™
> & Documents | bin 6/1/2014 738 AM File folder
> . Dow.nloads . CommonControls 6/1/2014 7:38 AM File folder
’ 'J' MUSIC | Images 6/1/2014 :38 AM File folder
s pfdures | Styles 6/1/2014 740 AM File folder
’ ..E Videos . . SubControls 6/1/2014 7:38 AM File folder
‘o Lol'cal Disk (C) . UserControls €/1/2014 7:38 AM File folder
“J inetpub] AboutPage.aspx 5/31/2014 2246 PM ASP.NET Server Pa...
> - C%JSte" |j AccessDeniedPage.aspx 5/31/2014 2:46 PM ASP.MET Server Pa...
o hstery =] Default.aspx 5/31/2014 246 PM ASP.NET Server Pa...
o logs [Z] ErrarPage.aspx 5/31/2014 246 PM ASP.NET Server Pa...
C o teme &) Global.asax 1/2014 2:46 PM ASP.NET Server A...
“ 0 oot =] HelpPage.aspx f2014 246 PM ASP.NET Server Pa..
© - sspnet.clent [E] HomePage.aspx [20142:46PM ASP.NET Server Pa..
——— | Ij KeysetAdd.aspx 5/31/2014 2:46 PM ASP.MET Server Pa... v
.. PerfLogs wle
33 items

Files Copied into the InstallKeyWeb Folder

4. Open IIS Manager and select the Application Pools node in the tree. Choose the option to Add
Application Pool. Name the application pool InstallkeyAppPool and configure the application pool
with .Net Version 4 and pipeline mode set to Integrated.

LomaCons InstallKey

32

L Internet Information Services (1IS) Manager = B
=
©) » WALLACE » Application Pools & @ -
File View Help
Connections
- qgl Application Pools T
sl [Add Application Pool...
493 WALLACE (Wallace\Locallon This page Add Application Pool ? Set Application Pool Defaults...
t:;* Application Pools server. Apy one @ Help
4-[a] Sites or more ag Name: ns.
- 4 Default Web Site
Filter: InstallKeyAppPool _
.MET CLR. version: _‘.
MName entity
Q.NI:—I'\.« .NET CLR Version v4.0.30319 W pplic:
L MET ws Managed pipeline mode: pplic:
L} Defaul Integrated v pplice
Start application pool immediately
< >
< > Content View
Ready

Creation of the InstallKey Application Pool

igﬂ.:i

5. Expand the Default Web Site node in the tree. Select the InstallkeyWeb folder. Select Content View.
You should see the same files that were copied to the file system.

493 WALLACE (Wallace\Locallon
£} Application Paols
4-[@] Sites
4 4D Default Web Site
b -] aspnet_client
« [intagie]
» -] bin
5.7 CommonCont
b 7] Images
b -3 Styles
o -[7] SubControls
5[] UserControls

e Internet Information Services (1IS) Manager - 0O
(€) 7] » WALLACE » Sites » Default WebSite » InstallKeyWeb » W @
File View Help

Connections . Actions

7 | InstallKeyWeb Content

Filter: - Go - % Show All | Group by: _
Name : Type e
[bin File Folder

[CommaonControls File Folder

[Images File Folder

[Styles File Folder

| SubControls File Folder

[l UserControls File Folder
E-IAboutPage.aspx ASP.MET Server Page

=] AccessDeniedPage.aspx ASP.MET Server Page

5] Default.aspx ASP.MET Server Page

[Z] ErrorPage.aspx ASP.MET Server Page

g] Global.asax ASP.MET Server Applicati
5] HelpPage.aspx ASP.MET Server Page

=] HomePane.acnx e

<

ASP.MFT Server Pane

>

L4 >

Ready

[Features View |2 Content View

] “InstallKeyWeb" Tasks
File Folder

Switch to Features View

i@ Explore

Edit Permissions...

Convert to Application
Add Application...

1 Add Virtual Directory...

Last Modified: 6/1/2014 7:40:00
AM

Manage Folder &)
Browse
k&l Refresh
@ Help
gﬂ.:

6. Right Click on the InstallkeyWeb folder and choose the option to Convert to Application. The Alias
and Physical Path Settings should already be correct. Click the Select button to change the
Application Pool. Choose the InstallkeyAppPool. (This app pool must be .Net 4 and Integrated

pipeline.)

LomaCons InstallKey

33

L5
=
©

| » WALLACE » Sites

Internet Information Services (I1S) Manager

v Default Web Site » InstallKeyWeb »

- O

@l e -

RTRETAREY Add Application
Connections 5
tal) _ stallKeyWeb' Tasks
4 95 WALLACE (Wallace\l >ename: Defauit Web Site & Folder
-} Application Pools Ratlc !
e _PF' itch to Features View
4@ Sites
‘@ Default Web S Alias: Application pool: slore
b B aspnet_cli InstallKeyWeb InstallKeyAppPool Select... it Permissions...
b InstalKey\ Erarmole: sal —
ple: sales o plication
Select Application Pool ? “,n
Physical path: -
Chinetpub\wwwrootInstallKeyWeb Application pool: L
. InstallKeyAppPool w SAPANETELTL
Pass-through authentication
. Properties: o
Connect as... Test Settings...
Met CLR Version: 4.0
L] Enable Preload Pipeline mode: Integrated
I
= 5| [E]Features View | Content View |
Ready gﬂ:i
Convert to Application Dialog and Select Application Pool
7. Click Ok to select the Application Pool, and click Ok to create the web application in IIS.
gy Internet Information Services (IIS) Manager - 0O
(© @ » WALLACE » Sites » Default WebSite » InstallKeyWeb » By @ -
File View Help
Connections Actions
e Q /InstallKeyWeb Home
A L] i@ Explore

£} Application Pools
4@ Sites

b - | bin

b7 Images

b [Styles

4 --@ﬂ WALLACE (Wallace\Locallon

4 4D Default Web Site
s -] aspnet_client

4 [InstallKeyWeb

> .| CommenConti

> .| SubControls
» .| UserControls

Filter: - Go - % Show All | Group by: _
=
ASP.MET ~
& & 2
| = @ 5
MET MET MET Error MET MET Profile
Authorizat.. Compilation Pages Globalization
B @ 1
2 (= Cid 2k}
.MET Roles .MET Trust .MET Users Application Connection
Levels Settings Strings
- N =
irﬂ = ._‘.}3} &’ L
Machine Key Pages and Providers Session State SMTP E-mail
Controls
115 ~
- A = Mo

Ready

> Features View || Content View

Edit Permissions...

B Basic Settings...

View Virtual Directories

Manage Application &)
Browse Application
Browse *80 (hitp)

Advanced Settings...

@ Help

9

Completed IIS Application Configuration

Database Connection String

The database connection string in the web.config file may need some changes that are specific to your
environment. The connection string can be set either by modifying the web.config file directly, or by
editing the connection string from within IIS.

LomaCons InstallKey

34

Edit the Connection String From Within 11S

The easiest way to set the connection string is to edit it from within [IS Manager. To edit the connection
string from within IIS, navigate to the InstallKkeyWeb application, and open the Connection Strings

settings.

Ls!

o @ » WALLACE »

File View Help

Internet Information Services (I15) Manager

Sites » Default Web Site » InstallKeyWeb »

404

/"".I

Authentic.. Compression Defa;llt Directory Error Pages
Document Browsing
1=y E| =" :!%ﬂ
&) = E &

Ready

[=]] Features View |2 Content View

e f@ /InstallKeyWeb Home .
— L= Open Feature
-85 WALLACE Il Locall
« E Wallace\locallong | - gy = % Go - gy Show All | Group by: Bl Exlore
L2 Application Pools Edit Permissions
4@ Sites ASP.MET SSiONs...
€ Default Web Site =h & “ r'\ [E] Basic Settings...
b+ aspnet_client % N = > = View Virtual Directories
> -[2F InstallKeyWeb MET MET .MET Error MET .MET Profile
Authorizat... Compilation Pages Globalization Manage Application 2
72N q 1\"2 =] Browse Application
\/ =5 Ei = ab| Browse *:80 (http)
.MET Roles .MET Trust .MET Users Application | Connection Advanced Settings
Levels Settings Strings L
- . @ Hep
£ P
= [
i!‘l? =B %?_A % =
Machine Key Pages and Providers Session State SMTP E-mail
Controls

&

Location of Connection String inside the Web Application in IIS

If you followed the steps above using the provided database name and SQL login creation scripts, then the
provided connection string values for Initial Catalog, User ID and Password values should be correct, but

you will need to confirm and configure the Data Source for your environment.

Confirm that the Data Source is correct for your running instance of SQL Server. If you are using SQL

Express on the same machine as the web server, the Data Source will most likely need to be changed to

(local)\SQLEXPRESS

LomaCons InstallKey

35

L= Internet Information Services (I1S) Manager = B
© @ » WALLACE » Sites » DefaultWebSite » InstallKeyWeb » @ @

File View Help

Connections - . . Actions
re ‘j Connection Strings
483 WALLACE (Wallace\Locallong | ¢\ Edit Connection String ?
o} Application Pools =
2.8 Si Name
4 -[a] Sites InstallKey]
2 &) Default Web Site InstallKey
| aspnet_client LocalSglServi () SQL Server
. [P InstallKeyWeb
Credentials
(® Custom
Data Source=(local\SOLExpress;Initial Catalog=InstallKey;User
ID=InstallKeyUser,Password=esessssssss
<
< > =/| Features Vie
Configuration: 'Default Web Site/InstallkeyWeb' web.config L=

A Database Connection String (yours may be different)

Directly Editing the web.config File

Alternatively, the connection string can be set by editing the web.config file. If you are comfortable with
directly editing configuration files, you can set the database connection string directly instead of using lIS
Manager.

Depending upon your machine configuration, Windows UAC (User Account Control) may not allow you to
directly edit and save changes to the web.config file, even when you are logged in as an administrator. To
resolve this, copy the web.config file to your My Documents folder, edit the web.config file and copy it
back, overwriting the original web.config file. (Alternatively you can disable UAC entirely by changing the
User Account Control: Turn on Admin Approval Mode setting using the Local Policy editor, however this
decreases overall operating system security.)

Confirming the Installation

To confirm the installation is complete and functioning properly, open Internet Explorer and navigate to
the InstallKey Application URL. If your browser is on the same machine as IIS, the url below should work.

http://localhost/InstallKkeyWeb/Default.aspx

If the database, web application and connection string was setup properly, you should be navigated to the
Login Page and be presented with the License Agreement. Please review the agreement and click Accept.

LomaCons InstallKey 36

o
)| 8 http:/ Nocalhost/InstallkeyWeb/LoginPage.aspi?RetumUri=%2flt O ~ ¢ || @ InstallKey Keyset and Key A... {,—,} :ﬁj {:}
3 P Y g ge.asp ey Key: ey

I nsta l InstallKey License Agreement

WSS insTALLKEY LicensE

You must accept the License to use InstallKey.

This license governs use of the accompanying software. If you use the software, you accept this ~
Home license. If you do not accept the license, do not use the software. This license agreement is valid
without the licensor's signature or the licensee’s signature. It becomes effective upon the licensee's

installation or use of the software.

1. Definitions

The "licensor” is LomaCons.

The "licensee” is the user of this software.

A "computer” is a single physical computer or single instance of a virtual machine.
2. Grant of Rights ST

The following grants are subject to the terms of this license, including the conditions and limitations
in section 3.

(A) The licensor grants the licensee a non-exclusive, worldwide, royalty-free license to use the

software.

(B) The licensee may install the software on no more than four computers. If the licensee has
purchased the source code, the licensee may install the software or derivatives of the software on no
more than twenty-five computers. The licensee may make copies of the software for backup

Accept

Install Key License Agreement

Common Issues and Solutions

The most common installation issues are listed below. Additional installation guidelines and tips can be
found on the FAQs on the www.lomacons.com website.

Cannot Edit the web.config File or other Files under C:\inetpub

Often it is not possible to edit files directly under the C:\inetpub\ folder, even when logged in as an
Administrator. This is a security feature of Windows UAC (User Access Control.) There are two methods
to resolve this.

1. Copy the web.config to your My Documents folder or any other folder where UAC allows file editing.
Edit the file, save the changes. Copy the file back into folder under C:\inetpub by overwriting and
replacing the original file. This is the most secure method as it does not violate Microsoft intended
security policies.

2. Disable UACin the local security policy. To disable UAC, open the security policy editor, and find the
setting for User Account Control: Turn on Admin Approval Mode. Set this property to disabled and
restart the machine. Note, that this method is less secure as this disables UAC. If you choose to use
this method, it is recommended that you re-enable this setting after making your edits to the
web.config file.

HTTP Error 500.21 — Internal Server Error

You may see HTTP Error 500.21 — Internal Server Error the first time you open the
http://localhost/InstallkeyWeb url in a browser after installing. This error usually indicates that support
for ASP.Net 4.0 is not installed in IIS properly.

LomaCons InstallKey 37

Follow these steps to resolve

1. Confirm that IIS and support for ASP.Net is enabled. Open the Turn Windows Features on or off
dialog. This dialog is located in the Add/Remove Programs applet in Control Panel.

2. IflIS and ASP.Net is enabled, but you still see the error, you may need to re-register support for
ASP.Net 4.0 into IIS. Open a command prompt as an administrator and run the command below
%windir%\Microsoft. NET\Framework64\v4.0.30319\aspnet_regiis.exe -i

Web App Does Not Display in the Browser

Even after following and reviewing all the installation steps above, the login web page does not appear
when attempting to connect to the web application.

The steps above assume that you are installing the InstallKey web application on a fresh install of
Microsoft Windows, and should work in most all installations. However, it is possible that your
environment or network administrator has configured the operating system differently such that the web
application does not work properly. When there is an error, the InstallKey web application should display
detailed error information and exception details which may help in locating the source of the error.

However, there are times where something may be preventing the InstallKey error page from displaying
properly. If this occurs, you will need to enable the standard Microsoft ASP.Net error web page to see the
error. Change the customErrors mode to Off and restart the web site. The customErrors is configured in
the web application’s web.config file or it can be set from within IIS.

To set the custom errors off in the web.config file, look for a line similar to the one below and change the

mode value to Off. Once you have resolved the problem, you can change the mode back to On.

<customErrors defaultRedirect="~/ErrorPage.aspx" mode="Off">

To set the custom errors to off from within 1IS, open IIS, navigate to the InstallkeyWeb application, and
open the .Net Error Pages settings. (This method will make the same change as editing the web.config.)

LomaCons Installkey 38

L Internet Information Services (I1S) Manager = =
i’@ =) |3 » WALLACE » Sites » Default WebSite » InstallKeyWeb » | “ @ -
File View Help
Connections Actions
3 /InstallKeyWeb Home
Ll H Open Feature
-85 WALLACE (Wallace\Local) |
<% & poor Wallace\Locallong | gy « % Go - 5 Show Al | Group by: o || @ Explore
: Application Pools = Edit Permissions...
4[| Sites ASP.NET A A
26D Default Web Site = @ Ife F‘\ Basic Settings...
b -[Z] aspnet_client % = = = View Virtual Directories
D--Q InstallKeyWeb MET MET .MET Error MET .MET Profile =
Autherizat.. Compilation Pages |Globalization Manage Application &
f T”:_"\] Browse Application
k\”I/ =i = o _|ab| Browse *80 (http)
MET Roles MET Trust NET Users Appli_catiorl Conn_ection Advanced Settings...
Levels Settings Strings
— |—. — @ Help
& R &
Machine Key Pages and Providers Session State SMTP E-mail
Controls
115 ~
Authentic... Compression Default Directory Error Pages
Document Browsing A
Ready Q.

Location of .Net Error Pages Settings

In the .Net Error Pages click the link for Edit Feature Settings

LomaCons InstallKey

39

L5
©C

File View Help

Internet Information Services (lIS) Manager

9 » WALLACE » Sites » Default Web Site » InstallKeyWeb »

&

<

4 -8 WALLACE (Wallace\Locallon

i[5} Application Pools

a- [&] Sites

& Default Web Site
b -] aspnet_client
b (¥ InstallKeyWeb

>

9 .NET Error Pages
[E]

Use this feature to configure HTTP error responses. The error responses can
be custom error pages, or detailed error messages that contain
troubleshooting information,

Group by: Mo Grouping =

Status Coae

400
4am
403

<

Redirect

~/ErrorPage.aspx?statusCode=400
~/ErrorPage.aspxfstatusCode=401
~(ErrorPage.aspx?statusCode=403
~/ErrorPage.aspx?statusCode=404
~/ErrorPage.aspxstatusCode=403
~/ErrorPage.aspxfstatusCode=408
~/ErrorPage.aspx?statusCode=414
~/ErrorPage.aspxfstatusCode=3500
~/ErrorPage.aspxstatusCode=303

Entry Type
Local
Local
Local
Local
Local
Local
Local
Local
Local

Configuration: 'Default Web Site/InstallKeyWeb' web.config

E Features View || 2 Content View

Add...

(Edit Feature Settings... !

Help

Location of Edit Feature Settings...

In the Edit Error Pages Settings, set the Mode to Off and click OK.

LomaCons InstallKey

40

g

L Internet Information Services (I1S) Manager -

o3

© @ » WALLS

B2 0O
®

Edit Error Pages Settings ? &
File View Help

Connections Mode =

7]) On
Rt I .
4 _:| \f\iALLAC.E (\.ﬂ"allace\L ® off
-2t Application Pools
48] Sites () Remote Only
2 & Default Web Si
| aspnet_clie
b (D InstallKeyW Redirect Mode
ResponseRedirect v
Default Page
Absolute URL
~/ErrorPage.aspx
Miscellaneous
[Allow Mested Errors
< =————
Configuration: 'Default Web Site/InstallKeyWeb' web.config 9

Edit Error Pages Settings Dialog

Once you have resolved the problem, you can change the mode back to On. This will enable the normal
InstallKey error processing.

Upgrading from Prior Releases of InstallKey version 5.x

Upgrading the web application from a prior release of version 5.x requires that you apply any database
changes, and replace the web application and web.config files.

As with any upgrade, you should test the upgrade before making any changes to your production
environment. At a minimum, you should create a backup of your database and web.config file.

Follow these steps to upgrade your InstallKey server. These steps assume that you have followed the
steps above to install InstallKey and that your web application files were copied into
C:\inetpub\wwwroot\InstallKeyWeb.

1. Unzip the Database.zip file.

2. Execute the InstallKeyDatabase.sql script file on the database. This will apply schema changes and
add any additional fixed content to bring your database up to the current release. This script will only
apply the necessary changes, and will not delete any of your keysets or keys.

3. Delete all the files under the C:\inetpub\wwwroot\InstallKkeyWeb including the web.config file.
e Do not delete the C:\inetpub\wwwroot\InstallKeyWeb folder.

e Take note of the database connection string before deleting the previous web.config file. This will
need to be recreated later in the new web.config file.

e |tisimportant that all files and folders are deleted so that all files and folders from the prior
release are removed.

4. Unzip the InstallkeyWeb.zip file.

LomaCons InstallKey 41

5. Copy the files and folders from the zip file into C:\inetpub\wwwroot\InstallKeyWeb

6. The database connection string will likely need some changes that are specific to your environment.
Open the web.config file; edit the connection string to connect to the InstallKey database. The
database connection string will most likely be the same as was in the old web.config file.

7. If you have any custom pre-validate or post-validate code, these will need to be updated. To update
them, you will need to recompile your custom code referencing the newest
LomaCons.InstallKkey.Common.dll assembly and re-install your new dlIl assembly.

8. If you are exposing the WCF web service endpoints over https, you will need to ensure that you have
a valid SSL certificate properly installed, and the https binding configured. Then uncomment the
secure endpoints in the web.config.

Support for HTTPS (HyperText Transfer Protocol Secured)

InstallKey is designed such that the validation web service will be tamperproof when running under the
http protocol. Although the data cannot be modified and is safe from tampering, the content sent to and
from the web service can be seen if someone is viewing the raw content as it travels across a network.
(This is intentional and is just the very nature of how HTTP works.) If your connection to the web
application and the APl web services is internal, on the same machine, or within an intranet environment,
then transmitting the data in the clear is not likely to be an issue.

However, if you are exposing the web application or the APl web services over the internet, you may want
to run InstallKey over HTTPS. This will enable this industry standard security protocol for encrypting the
raw web requests and responses. To enable InstallKey to run over https, your will need to configure your
web site with a valid SSL certificate and adjust the web.config file for the WCF endpoints accordingly.

Because InstallKey uses standard Microsoft tools and technologies, there is nothing unusual about
enabling HTTPS. If you are knowledgeable about configuring 11S and HTTPS, you will have no troubles
making the necessary changes to your installation of InstallKey. To configure InstallKey for HTTPS, you will
need to have an IIS server with a valid SSL certificate and uncomment the secure endpoints defined in the
InstallKey web.config file.

Follow these steps and guidelines for enabling InstallKey to work over HTTPS.

1. Install a valid and functioning SSL certificate into your 1IS web server from a trusted certificate
authority. Contact your certificate authority for details about how to purchase, install and set the
binding for the certificate into IIS.

2. InlIS Manager, view the Bindings for the Web Site. Confirm that the IIS web site has the https
binding installed. At this point you should be able to view the InstallKey web application in a browser
over HTTPS.

LomaCons InstallKey 42

Site Bindings 7=

Type Host Marme Port 1P Address Binding Informa... Add...
http a0 *
net.tcp I H
net.pipe *
net.msmg localhost
Mﬂﬂ_ﬂmﬁ localhost
(https ITERES

Close

Web Site Binding Configuration in IIS Manager

3. To enable the WCF web services to function over HTTPS, you will need to expose the secure
endpoints defined in the InstallKey web.config file. In the web.config, locate and uncomment the two
lines below. This will allow IIS to load and activate the secure WCF endpoints.

Caution — DO NOT uncomment the two secure endpoint definitions without first adding the https binding to 11S. If the web site does
not have a valid https binding and the lines are uncommented, then all WCF services will fail to load, including the http service.

<endpoint binding="basicHttpBinding" bindingConfiguration="secureHttpBinding"
contract="LomaCons.InstallKey.Web.Services.IValidator"/>

<endpoint binding="basicHttpBinding" bindingConfiguration="secureHttpBinding"
contract="LomaCons.InstallKey.Web.Services.IApiProcessor"/>

Secure HTTPS Endpoints

4. No changes are necessary in your calling application. To configure the calling endpoint in your
application, call the SetServiceAddress() method passing in the URL to the validation service. The
SetServiceAddress method will automatically detect if the URL scheme is http or https and adjust the
client endpoint binding accordingly.

string validationUrl = @"https://.../InstallKeyWeb/Validator.svc";
ClientSideValidator validator;

// create an instance of the ClientSideValidator object
validator = new ClientSideValidator (keysetName, password, factor, validationCode);

// set the service address URL
validator.SetServiceAddress (validationUrl) ;

Client Side Setup for Calling the Validation Service over HTTPS

LomaCons InstallKey 43

6. Key Management Website

The LomaCons.InstallKey.Web website provides a simple web based user interface to manage your
keysets and validation keys. Once you have logged in to the application, you can create keysets and keys.
If you have purchased a license for InstallKey, you will be able to create an unlimited number of keysets
and keys.

If you do not yet have a license, InstallKey will function as an evaluation, and will limit you to creating one
keyset and three keys. All other functionality is available, and will allow you to fully evaluate the product
before you purchase a license.

Login
Access to the web application is protected with ASP.Net Forms Authentication. This type of

authentication validates username/password combinations against the values stored in the InstallKey
database.

To login for the first time, open a browser window and navigate to the InstallKey web application. If you
installed the application locally, as described in the preceding chapters, you should be able to connect to
the website at this URL

http://localhost/InstallKeyWeb/Default.aspx

If everything is configured properly and you have entered the correct URL, you should see the login page
below.

e.(gij}|:§; hitp://localhost/InstallKeyWeb D H @ Installkey Keyset and Key A.. | | o

Log On A

InstallKey

Keyset and Key Administration

HOME

Home Login

Log into InstallKey to create update and delte your keysets and keys.
Home

UserName
Admin
Password

Login

FORGOT PASSWORD

The ability to request a password reset email be inculded in a future release of InstallKey.

InstzllKey 5.1.652.1411 Copyright © 2007-2014 LomaCons, SP Design by styleshout
Login Page

The default username and password for a new installation was created when the database was created.
To log in for the first time, use the Admin login and password below.

UserName: Admin
Password: admin

It is strongly recommended that you change the admin password using the user management or user
preference settings (see below.)

LomaCons InstallKey 44

Login Maintenance

If you have multiple users who will be managing you keysets and keys, use the login Maintenance pages
to create the logins, and reset passwords. Additional user access rights may be set to allow users to
access the System Settings, Keysets, Sure Keys and the API.

User Settings

Users can change their login password at any time from the User Settings page. Additional user editable
preferences will be added as needed in future versions of InstallKey.

System Settings

There are a few system settings that can be set to configure how InstallKey functions. These settings can
be modified at any time from the System Settings page.

e‘: \"|:§,‘ http://localhost/InstallKeyWeb/SystemSettingsPage.aspx Lr~-a H :g} InstallKey |

Admin | Log Off

~
Keyset and Key Administration
HOME KEYS TOOLS HELP
Tools System Settings
e Change InstallKey system settings and defaults
Manual Validation
User Settings BRANDING
Modify the web site branding
System Settings
Login Maintenance Stejltie
InstallKey
Site Subtitle
Keyset and Key Administration
Apply
MANUAL VALIDATION
Settings for manual validation
O Allow Anonymous Manual Validation
Apply
InstallKey 5.3.717.1756 Copyright © 2007-2014 LomaCons, SP Design by styleshout v

System Settings Page

Branding

The branding settings allow you to modify the Title and Subtitle displayed on the InstallKey web
application. This may be useful if you want to display something specific to your business, instead of the
normal InstallKey title.

Manual Validation
This section allows you to modify access to the manual validation web page. By default, you must first
log into the InstallKey Web application with a username and password before validating a surety file.

When the Allow Anonymous Manual Validation setting is enabled, anyone can access the manual
validation page (without logging in first.) This may be useful if you want to allow your customers without
internet connections to self-validate surety files.

LomaCons InstallKey 45

Pre Validate and Post Validate Custom Code Integration

These two sections allow you to define a custom .Net assembly that will be called during the pre or post
sure key validation process. See the chapter below on Customizing the Validation Process for more
information about how to create and integrate your custom code.

API Settings

This section contains the settings and values that will be used with the InstallKey API. See the chapter
below on the InstallKey APl for more information about how to utilize the API.

Keysets

A Keyset is a logical grouping of keys. Typically, a separate keyset should be created for each unique
software product you want to support key based validation.

The keyset is identified by a name, and consists of a password and a keyset factor. The keyset factor is
used to programmatically identify a humanly readable key as being of that keyset type. The password is
used to perform encryption and key information validation. This encryption and validation is used for
preventing casual tampering of an InstallKey surety file and it is used during server validation of the key.

Keysets are managed from the Keys tab. To begin, navigate to the Keys tab and select the Keysets option
from the Keys sidebar. If you have already created a keyset it will appear in the list displayed. However, if
this is your first keyset, the list will be empty as pictured below.

Y |

Ay
| LU a8 2348

e(_= :\‘_w| @& nttp://localhost/InstallKeyWeb/ KeysetMaintenancePage.aspx P-cC H & InstallKey Keyset and Key A. |

Admin | Log OFff

InstallKey

Keyset and Key Administration

HOME KEYS TOOLS HELP

Keys Keyset Maintenance
L Manage Keysets
i KEYSETS

Commands

MNew Keyset

Installey 5.1.653.1411 Copyright ® 2007-2014 LomaCons, SP Design by styleshout

Keyset Maintenance Page

Creating Keysets

To create a keyset, click the New Keyset link on the Commands menu. This will navigate you to the New
Keyset page.

LomaCons InstallKey 46

- omm|
e{\:?)'@ hitps//localhost/InstallKeyWeb/Keysethdd.aspxinavBackKey=8bBe7l JO = C H @ InstallKey Keyset and Key A... | | A Y

Admin | Log OFff

InstallKey

Keyset and Key Administration

HOME KEYS TOOLS HELP

Keys New Keyset
Create a new Keyset
Sure Keys
Keysets Keyset Name

MyFirstKeyset

Password

titgdiek x
Minimum Identifier Matches

3

cancel Create Keyset

InstallKey 5.1.653.1411 Copyright @ 2007-2014 LomaCons, 5P Design by styleshout

Create a new Keyset

Enter a keyset name and a password. Set the Minimum Identifier Matches to 3. Three is the default value
to use when using the default machine identifier matching provided by InstallKey.

Note: The minimum identifier matches value may need to be different if you are using custom client identifier values. See the section
below titled “Custom Identifiers and Matching” for more information.

Click the Create Keyset button to create the keyset. This will automatically generate a keyset factor that
matches this keyset name and password.

Note: Once you have created a keyset, its password cannot be modified. Although there are no password restrictions, it is
recommended that you use a password that is sufficiently complex.

Note: No two keysets are the same, even when the keyset name is the same. For example, if a keyset is deleted and a new keyset is
created with the same keyset name, the keyset factors will be different.

To view the newly created keyset, click on the keyset name in the list

LomaCons InstallKey 47

-

(2 InstallKey Keyset and Key A... | | i L £

PPN
el\'=_:>/‘|@ http://localhost/InstallKeyWeb/KeysetMaintenancePage.aspx P~-c

Admin | Log Off

InstallKey

Keyset and Key Administration

HOME KEYS TOOLS HELP

Keys Keyset Maintenance
i Manage Keysets
Kok KEYSETS
Keyset Name Keys
Commands

’
New Keyset

Install<ey 5.1.653.1411 Copyright ® 2007-2014 LomaCens, SP Design by styleshout

Keyset List

The keyset details page will show the keyset name, password, factor and validation code. These values
will be used later to validate keys on the client and as the parameters to the ClientSideValidator object.

LomaCons InstallKey 48

- O X

eQ)@ nttp://tocalhostInstallKeyWeb/Keys<tView.asptpkKeyset=16mnavBac O ~ G H @ InstallKey Keyset and Key A... | | NIATEE
Admin | Log OFf A
Keyset and Key Administration
HOME KEYS TOOLS HELP
Keys View Keyset
View the Keyset properties and settings
Sure Keys
MYFIRSTKEYSET
Keysets
Keyset Name
Commands)
MyFirstKeyset
New Sure Key Password
Property Definitions titgdiek
Delete Keyset Minimum Identifier Matches
3
Factor
uFhrEESgrflhZktD76efahgs3lizkdAOsmsyyTY3sBMQNByHNCFRyIwVrgpoQScSfggvxN7veq78RLUTu4jaNg==
Validation Code
s0GYAsVN1YOMIErSvs/ Gvw\WSay5SwBzT BA7KHE6+C1":SN+U Whi3IpPrkkKkég1lApwwmD1pgepCGQdrLS0+ig==D8CfudL
13|D348F‘2gwpvk371‘ﬂ'])(‘ oxO6iottuyTzYosN+UVWhI3IpPrkkKkég1lApwwmD1pgepCGQdrLS0+ig==
Back
V]

Keyset Details

The validation code is a uniquely generated value. It will be different every time the keyset details are
viewed.
Editing Keysets

Keysets cannot be modified. Once created, the keyset name, password and factor are fixed values.

Deleting Keysets

Keysets can be deleted, click the Delete Keyset command to delete the keyset that you are currently
viewing. A confirmation popup will appear to confirm this action.

If the keyset has one or more active keys, the keyset cannot be deleted. To delete such a keyset, first
revoke all of the sure keys in the keyset, and then delete the keyset.

Deleting the keyset will also delete all related sure keys and properties, and cannot be recreated.

Note: No two keysets are the same, even when the keyset name and password are the same. For example, if a keyset is deleted and
a new keyset is created with the same keyset name and password, the keyset factor will be different.

Sure Keys

After you have created a keyset, you can create keys for that keyset.

Keys are managed from the Keys tab. To begin, navigate to the Keys tab and select the Sure Keys option
from the Keys sidebar. If you have already created a key it will appear in the list displayed. However, if
this is your first keyset, the list will be empty as pictured below.

Each 30 character key is unique and is a match to its keyset.

LomaCons InstallKey 49

e@|@ http://localhost/InstallkeyWeb/SureKeyMaintenancePage.aspx L~

2 InstallKey Keyset and Key A... | | i g i

Admin | Log Off

InstallKey

Keyset and Key Administration

HOME KEYS TOOLS HELP

Koy Sure Key Maintenance
Sure Keys Manage the Sure Keys
Keysets KEYS
ﬂ ﬂ Apply Clear
Commands

InstallKey 5.1.653.1411 Copyright ® 2007-2014 LomaCens, SP Design by styleshout

Sure Key Maintenance Page

Creating Keys

To create a key, click the New Sure Key link in the Commands menu. This will navigate you to the New
Sure Key page.

LomaCons InstallKey 50

2 InstallKey Keyset and Key A...

e@| & nitp://localhost/InstallkeyWeb/SureKeyAdd aspx?pkKeyset=18inavBa O ~ ¢ \

Admin | Log Off

InstallKey

Keyset and Key Administration

HOME KEYS TOOLS HELP

Keys New Sure Key
Create a New Sure Key that matches a Keyset
Sure Keys
Keysets Keyset

MyFirstKeyset
Customer
My First Customer
Violation Limit
4
Cancel Create Key

InstallKey 5.1.653.1411 Copyright ® 2007-2014 LomaCens, SP Design by styleshout

Create a New Sure Key

Enter the Customer Name and a Violation limit. Click the Create Key button to create the key.

LomaCons InstallKey

51

& nitp://localhost/InstallKeyWeby/SureKeyAdd.aspx?pkKeyset=18inavBa O ~ € || @ InstallKey Keyset and Key A... X
P Y Y raiey ey Key: ey

| AR

InstallKey

Keyset and Key Administration

HOME KEYS TOOLS HELP

Keys
B Confirmation Ix]
The key has been sucessfully created
Keyset
MyFirstkeyset
Customer Name
My First Customer
Key

47CZZ-T3ZD7-195MV-VPTFG-HLSPY-KFUXK
Create Key

OK

Key Creation Confirmation

The violation limit is the number of times that a key can be uniquely validated. The client specific, unique
identifiers (such as the bios identifier, hard disk, CPU ID, etc. or other values) are used to uniquely identify
where the key was validated. The usage count is incremented only when a new set of identifiers is
identified. Thus repeat validations from the same machine (with the same identifiers) will not increase
the usage count.

For example, if the key violation limit is 4 and your customer attempts to validate his key on 5 machines,
the first 4 will succeed, but validating from the fifth machine will fail. Even after the fifth machine fails,
only the first four machines will continue to validate successfully. Your customer will have to contact you
to increase the violation limit, thus keeping you in control of number of valid installations.

Editing Keys

Use the grid filter and sorting to find the key. To edit a key, select the key from the list. Click the key to
navigate to the key edit page. On the Key Edit page, you can change the customer name and violation
limit.

Future releases of InstallKey will provide additional usage counting and validation information.

Revoking Keys

Revoking a key effectively disables the key at the server. Any future attempts to validate the key will fail
regardless of how many times the key has been used.

Deleting Keys

Use the grid filter and sorting to find the key. To delete a key, select the key from the list to navigate to
the key edit page. On the Key Edit page, you can delete the key by clicking the Delete Key command. A
delete confirmation dialog will appear.

LomaCons InstallKey 52

To prevent accidental deletion of a key, the key must first be revoked. Revoke the key by selecting the
Revoke checkbox, and Save the changes. Then click the Delete Key command to delete the key.

Note that deleting a sure key is permanent and the key cannot be recreated because this will delete the key, the usage history and
usage count records from the database. All history and information about the key will be deleted. If you are unsure about deleting a
key, it may be better to revoke it instead.

LomaCons Installkey 53

7. Client Side Tester and Other Samples

InstallKey includes a number of client side applications and code samples written in C# and VB.Net. These
samples provide working code that utilizes the ClientSideValidator object to confirm that a key was
successfully validated.

The InstallKey client side libraries are 100% compatible with VB.Net. Samples written in VB.Net will be included in a future release of
InstallKey.

Client Side Tester

The client side tester is a single win form application that can be used to test and validate a key against
the Install Key Validation web service. It is useful when you want to confirm that you have installed the
InstallKey web application properly.

Although it is not a practical example of the usage of the ClientSideValidator, the source code for this tool
is provided and includes working code examples for key validation, usage invalidation and reading custom
properties.

Win Forms Sample

The Win Forms Sample application demonstrates how the ClientSideValidator can be used to restrict
application access when the key has not been applied. If the application has not been validated, it will
prompt the user to enter a key.

To set up this application, you will first need to create a keyset and a key using the InstallKey key
management web application. After creating the keyset, modify the sample source code to insert the
keyset values and validation URL into the code where defined.

Web App Sample
The Web App Sample application demonstrates how the ClientSideValidator can be used to restrict
application access when the key has not been applied in an ASP.Net Web Application.
This sample also contains examples of these concepts.
e How to provide custom Client Side Identifiers
e How to store the surety in a database

To set up this application, you will first need to create a keyset and a key using the InstallKey key
management web application. When creating the keyset, set the Minimum Identifier Matches to 1. After
creating the keyset, modify the sample source code to insert the keyset values and validation URL into the
code where defined in the web.config file.

To create the database that will be used to store the surety, view the Default.aspx page. This page
contains the script that will create the database login and necessary table schema.

Pre Post Sample

The Pre Post Sample project provides working source code for providing custom code that is executed as
part of the validation process. This sample shows how a Pre Validate method can force the validation to
fail and shows how custom data can be included in the property bag to be sent to and from the server
during validation. The Client Side Tester is also used with this sample to load and read values to and from
the property bag.

See the chapter on Customizing the Validation Process for more information about how to add your
custom code to the pre and post validation process.

LomaCons Installkey 54

Api Sample

The API Sample project provides working source code for the InstallKey API. This sample has working
examples of every API call.

See the chapter on InstallKey Server API for more information about how to integrate and call the API
methods and properties from your custom code.

LomaCons Installkey

55

8. Custom Key Properties

Custom key specific properties can be sent securely from the server to the client by embedding the
information in the surety. Because the properties are part of the surety, the same validations and
methodology that prevents modifications and tampering to the surety ensures that the contents of the
properties are also securely stored and not modifiable by the user.

Custom properties can be defined and maintained directly from within the InstallKey key management
web application. No custom code needs to be added to the web application. After validation, the
property values can be retrieved from the surety on the client.

Defining Properties on a Keyset

To add a property to a key, the property must first be defined on the Keyset. Navigate to the View keyset
page for the keyset that you want to add a property to, and click the Property Definitions Link.

_ =
(‘|’_&_‘|hn A /InstallKeyWeb/KeysetView.aspx?pkKeyset= 1 &navl ¢l a N A
2)| & http://localhost/InstallKeyWeb/KeysetView.aspxlpkKeyset=18navBa 0o~ 2 InstallKey Keyset and Key A... L af 228
Admin | Log OFff o~
Keyset and Key Administration
HOME KEYS TOOLS HELP
Keys View Keyset
View the Keyset properties and settings
Sure Keys
MYPRODUCT
Keysets
Keyset Name
Commands
MyProduct
New Sure Key Password
Property Definitions jbattjritep
Delete Keyset Minimum Identifier Matches
3
Factor
uebZo2y0DdLNwYulswYUp314CaqVnHT+Yv4RHag76ibn7VoM3MZxkIgOurkGHPGRWS2RIT 1gsnSAhGEDbd27aQ==
Validation Code
LCTperqgzQvHSDRCvxz3yZN/Xcj6BEUSBUWZiZ 02ZK2HGZmNZ eEtp/6vLkMAe +tAw7KZbNGPox6DIVUGIvnbaGg = =go0jbLzHT
i7w28vaE3aycl1favk15Q]jCFSaAawO+EqnGzmNZ eEtp/6vikMAe +tAW7KZbNGPox6DIVUGIvnbaGg==
v

H00% -

Property Definitions Link

In the page that follows click the New Property Definition Link to navigate to the Add Property Definition
page.

LomaCons InstallKey 56

GQ j\'| '—j:} http://localhost/InstallKey\Web/PropertyDefinitionMaintenancePage. L~ || 1% InstallKey Keyset and Key A.. | | "u’-D {"’ ‘:::3

Admin | Log OFf

InstallKey

Keyset and Key Administration

HOME KEYS TOOLS HELP

Keys Keyset Property Defintions

Create, edit and delete the list of properties that can be assigned to keys within this keyset.
Sure Keys

Kot MYPRODUCT

Back
Commands

New Property Definition

InstallKey 5.1.665.325 Copyright © 2007-2014 LomaCons, SP Design by styleshout

®100% -

Location of the New Property Definition Link

On the Add Property Definition page, define the properties of the property definition. The Name and
Grouping Name are used to uniquely identify the property on the keys and find them from within your
client code. The other settings define how the property will appear and function on the Key Add and Key
Edit web pages.

The Label Text is the value that will displayed on the key edit web page.

The Required on Every Key checkbox defines if the property must be assigned to every key in the keyset.
If this checkbox is clear, then the property is optional on the keys.

The Value Required checkbox defines if a value must be entered for the property value.

The Maximum Character Length is the max allowed characters that the user can enter for the property
value.

The Default Value is the value that will be prefilled in the key add web page when adding a new key.

The RegEx value will be used to validate the data entry on the key add and key edit web pages. The RegEx
Failure Message is the text that will be displayed if the user does not enter a value that matches the regex
expression.

LomaCons InstallKey 57

- O X

e(' :.5"‘ @ http://localhost/InstallkeyWeb/PropertyDefinitionAdd.aspx?pkKeyset= O +~ & ” (2 InstallKey Keyset and Key A... ‘ | ol *:" f::}
Admin | Log Off A
Keyset and Key Administration
HOME KEYS TOOLS HELP
Keys Add Property Definition
Add a property definition to a keyset.
Sure Keys
Keysets Keyset
MyProduct
Name Grouping Name
Label Text
O Reguired on Every Key O Value Required
Maximum Character Length
2000
Default Value
RegEx for Data Entry Validation
RegEx Failure Message
Cancel Create Property Defiition
v

Add Property Definition

As an example, suppose that you want to add a property to your keys to indicate that your customer has
purchased the professional edition of your product. Then when your customer runs your application, the
code can look for this property in the surety and respond accordingly.

To create the definition for such a property, enter these values in the property definition to define a
property that holds a Yes or No value.

Name IsProfessional
Grouping MyProductFeatures
Label Text Professional Edition
Max Char Length 3

Required on Every Key Yes (checked)
Value Required Yes (checked)

Default Value

RegEx for Data Entry AYes|NoS

RegEx Failure Message Professional Edition must be Yes or No

Note that keyset property definitions can be added, edited or deleted from keysets at any time. However, it is important to

understand the implications of changing the property definitions on the Keyset. Depending upon how you are using the properties
and depending upon how your client code utilizes them, you can lose data or worse, your application may not function properly.

Assigning Properties to Keys

After a property definition has been assigned to a keyset, the property will be visible when adding or
editing the keys for that keyset. The field label text and the data entry rules defined on the property
definition are used to display a data entry field.

LomaCons InstallKey 58

For example, the IsProfessional property definition defined above will appear as a label and data entry
text box when editing a key. Because the property definition has a regular expression, the text is limited
to Yes or No.

e(_\)'l‘ & http://localhost/InstallKeyWeb/SureKeyAdd.aspx?pkKeyset=1&navBac 0 ~ & ” & InstallKey Keyset and Key A... ‘ |

Admin | Log Off

InstallKey

Keyset and Key Administration

HOME KEYS TOOLS HELF

Keys New Sure Key

Create a New Sure Key that matches a Keyset
Sure Keys

Keysets Keyset
MyProduct

Customer

Violation Limit

Professional Edition

Cancel Create Key

InstallKey 5.1.677.2052 Copyright ® 2007-2014 LomaCans, SP Design by styleshout

Key Data Entry with Custom Property

Retrieving Properties on the Client

The properties are available on the client any time after the key has been validated. Because the property
values are stored securely in the surety, they are available without a connection to the server, and cannot
be modified without invalidating the surety.

To retrieve the properties on the client, retrieve the values from the LocalSuretyContent object. An
example of reading the IsProfessonal property is below.

public bool GetIsProfessional (ClientSideValidator csv) {
bool result = false;

foreach (SuretyProperty sp in csv.LocalSuretyContent.Properties) {

if (sp.GroupName == "MyProductFeatures") {
if (sp.Name == "IsProfessional" && sp.Value == "Yes") {
result = true;
}
if (sp.Name == "IsProfessional" && sp.Value == "No") {
result = false;

}
}
}
return (result) ;

}

Client Side Properties Sample

Refreshing the Property Values on the Client

Changing the property values on the client will require changing the editing the value stored in the key on
the server and then refreshing the client. Because the properties are stored securely in the surety, the

LomaCons InstallKey 59

values can only be changed by calling the ValidateAgainstServer method to refresh the surety with the
current content.

Using the example above, assume that your customer first purchased the standard edition of your
product and a few weeks later the customer purchased an upgrade to the professional edition. To effect
this change, you will edit the customer’s key, changing the value of the Is Professional property from No
to Yes. Then the customer will refresh the surety on the client side to expose your product’s additional
functionality.

LomaCons Installkey 60

9. Storing the Local Surety

Once the key has been validated against the server, the surety is persisted locally so that it can be used to
validate without another round trip to the server. By default the surety is persisted as an XML file in the
current working folder. Two implementations of this interface are included with InstallKey and a third is
provided as sample.

The ISuretyStorage Interface

The ISuretyStorage is used by the ClientSideValidator object to persist and read the local surety. Any
object that implements ISuretyStorage can be used to persist and read the surety. This provides unlimited
possibilities for implementing a custom storage mechanism.

FileSuretyStorage

This is the default Surety Storage object used by InstallKey. The FileSuretyStorage object is used to persist
and read the surety from a file on the file system. Below is a code snippet showing how to create a
ClientSideValidator object that will persist the surety to a file in the root of the C drive.

ClientSidevValidator cl;
ISuretyStorage storage;

storage = new FileSuretyStorage (@”C:\Surety.xml”) ;
cl = new ClientSideValidator (password, keysetFactor);
cl.SuretyStorage = storage;

SuretyStoragelsolated

The SuretyStoragelsolated object is used to persist the surety as an XML file using the .Net isolated
storage mechanism. By default the xml file is stored using GetMachineStoreForDomain scope. Below is a
code snippet showing how to create a ClientSideValidator object that will persist the surety to a file in the
root of the Isolated Storage.

ClientSideValidator cl;
ISuretyStorage storage;

storage = new SuretyStorageIsolated() ;

storage.FilePath = “Surety.xml”

cl = new ClientSideValidator (password, keysetFactor);
cl.SuretyStorage = storage;

Database Storage

Another surety storage possibility is to store the surety in a database record. The WebAppSample
includes an example of how to implement an ISuretyStorage such that the surety can be persisted to/from
a database.

Securing the Surety Content

Regardless of where the surety is stored, it can be casually viewed. In the case of storing the surety in a
file, the contents can be viewed with any text editor. This is just the nature of XML, and it is also the
intention of InstallKey to allow the surety to be viewed. Because the surety is tamperproof and secure,
the user will invalidate the surety if they attempt to modify it. Therefore, it may be best to allow the user
to see the content just to show what information is collected and prove that you have nothing to hide.

However, you may not want the user to be able to see the contents. In this case, set the
EncryptLocalSurety property to true. When EncryptLocalSurety is true, the entire contents of the surety
will be encrypted when the surety is stored on the local system.

LomaCons InstallKey 61

10. Validation without an Internet Connection

There are scenarios where a customer may not be able to validate a sure key because access to the
internet is not available. To facilitate this, InstallKey provides a way to perform secure validation.

Use Case and Solution

What happens when your customer wants to install your application in a highly secure, or locked down
environment where the internet cannot be connected to for any reason? In this scenario, the web service
call will always fail, and the sure key cannot be validated directly.

The solution to this is a manual transport that maintains the security of the validation process. To do this
these steps can be taken.

The un-validated surety is exported as an xml file on the local machine
The surety file is copied to a floppy disk or USB key.
The surety file is taken to a machine that does have internet access.

The surety file is uploaded to the InstallKey web server and is validated.

1.
2.
3
4
5. The validated surety file is downloaded from the InstallKey web server.
6. The validated surety file is copied to a floppy disk or USB key.

7. The validated surety file is taken to the machine that does not have internet access.
8. The validated surety file is applied, and the application is valdiated.

All subsequent validations will not require another round trip to the server as all the necessary
information is already securely in the surety stored on the local machine.

Security of the Solution

This manual method of validating the sure key is just as secure as validating it directly over the internet.
Both the un-validated and validated sureties are tamperproof, and are also specific to the machine where
they are installed. This makes it virtually impossible to modify the surety, and therefore virtually
impossible to use the validated surety file on more than one machine.

Validation Web Page

To validate the surety upload the un-validated file to the Manual Validation web page.

LomaCons InstallKey 62

=
2 InstallKey ‘ | {0 2.8 fe3

Admin | Log OFf

.
el’\@ﬂ@ http://localhost/InstallKeyWeb/ManualValidationPage.aspx L-a

InstallKey

Keyset and Key Administration

HOME KEYS TOOLS HELP

Tools Manual Validation

validate a key without a direct internet connection
Manual Validation

VALIDATE AN UNVALIDATED SURETY FILE

Use this tool to upload and validate an unvalidated surety file. This can be used to create a validated surety file when you do not

User Settings

System Settings have a direct internet connection from the system that needs to be validated.

Login Maintenance
Unvalidated Surety File

Browse...

Upload and Validate

Installkey 5.3.718.1038 Copyright ® 2007-2014 LomaCons, SP Design by styleshout

Manual Validation Web Page

The file will be validated against the server (just as it would during the ValidateAgainstServer method call)
and if all is well, a validated surety file will be created and you will be prompted to download the file.

e
& InstallKey ‘ ‘ {rfb i\.‘? {g}

Admin | Log OFf

e'@ﬂ@ http://localhost/InstallKeyWeb/ManualValidationPage.aspx R+

InstallKey

Keyset and Key Administration

HOME KEYS TOOLS HELP

Tools Manual Validation

5 Validate a key without a direct internet connection
Manual validation

VALIDATE AN UNVALIDATED SURETY FILE

Use this tool to upload and validate an unvalidated surety file. This can be used to create a validated surety file when you do not

User Sethings

System Settings have a direct internet connection from the system that needs to be validated.

Login Maintenance
Validation Successful

The validation was successful and a validated surety file has been created. Download the validated surety file and apply it to

your system.

Download

Installey 5.3.718.1038 Copyright © 2007-2014 LomaCons, SP Design by styleshout

Validated File Successfully — Ready To Download
If the validation process fails (because the surety was tampered with, the key is invalid or revoked, etc.)

then the Validation page will display an error message to the user. Because of the error, a validated
surety file will not be created.

LomaCons InstallKey 63

_) |
| 3 v £

Admin | Log Off

e@|@ http://localhost/InstallKeyWeb/ManualValidationPage.aspx L-a |

& InstallKey

InstallKey

Keyset and Key Administration

HOME KEYS TOOLS HELP

Tools Manual Validation

Validate a key without a direct internet connection
Manual Validation

VALIDATE AN UNVALIDATED SURETY FILE
Use this tool to upload and validate an unvalidated surety file. This can be used to create a validated surety file when you do not

System Settings have a direct internet connection from the system that needs to be validated.

User Settings

Login Maintenance Validation Failed
The validation process failed.

The key that was used to create the unvalidated surety has been revoked and is no longer valid.

Installkey 5.3.718.1038 Copyright © 2007-2014 LomaCons, SP Design by styleshout

Manual Validation Failure
Example

See the Client Side Tester sample for an example of how to export the un-validated surety as a file,
validate the surety and apply the validated surety.

LomaCons InstallKey 64

11. Customizing the Validation Process

InstallKey provides all the necessary methods and properties to handle common key validation needs such
as trial validations, properties and revoking keys. However, there are an unlimited number of custom
scenarios that InstallKey cannot provide, but can be easily implemented using custom code. Ultimately,
this provides a very powerful method to customizing the validation process to fit any need, without
having to rebuild or modify the provided InstallKey code.

For this reason, pre-validation and post-validation interfaces are provided such that you can add your
custom code into the validation process. In addition, a property bag is provided that allows your custom
code to send any serializable object securely to and from the server as part of the surety.

The Validation Process

The steps below outline the step by step process that occurs when the ValidateAgainstServer method is
called, and where your custom pre validate or post validate code will be called.

e The ValidateAgainstServer method is called on the client. Optionally a set of property bag values
can be sent to the server along with the 30 character key.

e The surety containing the key, identifiers and property bag is sent to the server.
e Once on the server, the surety is validated to confirm that it was not tampered with.

e The key provided is confirmed that is a match for the keyset and that it exists in the InstallKey
database. If the key does not exist in the database, the validation process ends and the result is
immediately sent back to the client.

e The key is checked to see if it was revoked. If the key is revoked, the validation process ends and
the result is immediately sent back to the client.

e The number of identifiers provided in the surety is checked against the minimum number of
identifiers required for the keyset. If there are not enough identifiers, validation process ends
and the result is immediately sent back to the client.

e PreValidate — If the pre-validate assembly is defined, the assembly is loaded and the custom pre-
validate code is executed. A reference to the property bag is passed to the pre-validate method
and may be modified by the custom code. If the prevalidate method indicates that the validation
process should fail at this point, the validation process ends and the result is immediately sent
back to the client.

e The identifiers provided by the surety are checked against any identifiers that were already
recorded in the database for the key during any prior successful validations. If the key has been
validated too many times, the validation process ends and a violation result is immediately sent
back to the client.

e PostValidate — If the post validation assembly is defined, the assembly is loaded and the custom
post-validation code is executed. A reference to the property bag is passed to the pre-validate
method and may be modified by the custom code.

e The property bag, and any other custom properties are added to the surety, and surety is sent
securely back to client with a successful status.

e Back on the client, the validated surety is validated to confirm that it was not modified or
tampered with, stored locally on the client and will contain all surety content, properties and the
contents of the property bag.

LomaCons Installkey 65

Create and Install a Custom Code Assembly

Follow these steps to create a Pre Validate assembly and associate it with an installation of InstallKey.
The steps below are for the Pre Validate, however, the process is the same for Post Validate. A working
sample is provided in the PrePostSample project included with the InstallKey distribution zip file.

e Open Visual Studio and create a new Class Library project
e Add areference to the LomaCons.InstallKey.Common.dll assembly
e Add a strong name key to the project, and apply the strong name to the project

e Create a class object that implements the IPreValidate interface. A code sample is pictured
below.

public class PreValidateSample : IPreValidate {

public PreValidateSample () {
return;

}
public EnumPreValidationResult PreValidate (

string keysetName, string sureKey,
Guid installGuid, IDictionary<string, object> propertyBag) {

// your custom code goes here

return (EnumPreValidationResult.Continue) ;

PreValidate Code Sample

e Build the assembly into a .dll file.
e Copy the .dll file into the bin folder of the InstallKey web application.

e Loginto the InstallKey web application and navigate to the System Settings page. On the system
settings page there is a section to define a custom code integration.

PREVALIDATE CUSTOM CODE INTEGRATION
These settings allow you confirm an configure your custom code that will run on the server as a prevalidation process. This code
will run before each key validation. Use the Find tool to search for available classes and assemblies in the web application bin

folder.
Code Class Name
LomaCons.InstallKey.PrePostSample.PrevalidateSample Find Tool
Assembly Name

LomaCons.InstallKey.PrePostSample, Version=1.0.0.0, Culture=neutral, PublicKeyToken=8d06dc7a14f26f0d

Apply
Pre Validate Configuration Settings

e Enter the full code class name and assembly name that implements the IPreValidate interface.
Or use the Find Tool to locate the values. The find tool will search the bin folder of any dll file
that implements the IPreVadiate interface and will auto populate the text fields. Click the Apply
button to save the settings.

e If there are no errors, the code is properly installed and will be executed during validations.
Otherwise, an error message will be displayed if there was any errors while configuring the
custom code interfaces.

LomaCons InstallKey 66

The PreValidate Method

When the PreValidate method is called during the validation process, information about the key being
validated is passed to the code in your custom assembly that implements the IPreValidate interface. A
description of the parameters and return code is below.

public interface IPreValidate ({
EnumPreValidationResult PreValidate (
string keysetName,
string sureKey,
Guid installGuid,
IDictionary<string, object> propertyBag);

IPreValidate Interface Definition

keysetName

The keysetName parameter will contain the name of the keyset that corresponds to the key being
validated. This parameter is useful if you have multiple keysets and need to have different processing or
code paths that are dependent upon the keyset.

sureKey
The sureKey parameter will contain the key being validated in the human readable, 30 character, key
value form with dashes.

installGuid

The installGuid parameter will contain the unique guid value that corresponds to the key being validated.
This value can be used to query the database or otherwise locate additional information about the key
being validated. See the PrePostSample code for a working code sample that reads content from the
InstallKey database.

propertyBag
The property bag is a dictionary collection that is passed securely from the client to the server. This
allows you to pass additional values and serializable objects securely to and from the server.

If a property bag was provided when the ValidateAgainstServer method was called, the property bag will
contain the values provided from the client.

The key value pair items in the property bag can also be modified, added to or removed from within you
custom code. The property bag is then sent back to the client and the values contained can be read from
the local surety on the client.

return code

The return code is an EnumPreValidationResult value, and is used to indicate if the validation process
should continue or fail. This is useful in situations where you want you custom code to evaluate some
condition and optionally fail the validation process.

If the return code is set to EnumPreValidationResult.Fail, the validation process will end without fully
validating the key. On the client, the ValidateAgainstServer() method call return
EnumValidateResult.PreValidateFailure value accordingly. This is useful when you need to have your
client side code handle your failure.

If the return code is set to EnumPreValidationResult.Continue, the InstallKey validation process continues
normally.

The PostValidate Method

When the PostValidate method is called during the validation process, information about the key being
validated and its usage record is passed to the code in your custom assembly that implements the
IPostValidate interface.

LomaCons InstallKey 67

public interface IPostValidate ({
void PostValidate (
string keysetName,
string sureKey,
int pkUsageValidation,
IDictionary<string, object> propertyBag) ;

IPostValidate Interface Definition

keysetName

The keysetName parameter will contain the name of the keyset that corresponds to the key being
validated. This parameter is useful if you have multiple keysets and need to have different processing or
code paths that are dependent upon the keyset.

sureKey
The sureKey parameter will contain the key being validated in the human readable, 30 character, key
value form with dashes.

pkUsageValidation

The pkUsageValidation parameter will contain the primary key of the UsageValidation record that
represents the key being validated. From this primary key, other key and keyset information can be
queried.

propertyBag
The property bag is a dictionary collection that is passed securely from the client to the server. This
allows you to pass additional values and serializable objects securely to and from the server.

If a property bag was provided when the ValidateAgainstServer method was called, the property bag will
contain the values provided from the client.

The key value pair items in the property bag can also be modified, added to or removed from within you
custom code. The property bag is then sent back to the client and the values contained can be read from
the local surety on the client.

Adding Data to the Database

Custom values and data may be stored using any method or location of your choosing, including storing
them directly in the InstallKey database.
Any modifications that you make to the InstallKey database schema is always made at your own risk and will always contain the

possibly that your changes may not work with future releases of InstallKey. However, the methodology that follows is least likely to
cause issues with future changes to InstallKey, and is the preferred method to add you own content to the database.

When storing custom values in the InstallKey database, the recommended method is to store these
attributes in a separate table that has a one-to-one foreign key relationship with the InstallKey table. The
T-SQL code snippet below shows how to create a table to hold a custom property called CustomerEmail.
This will be used in the following use case and sample.

LomaCons Installkey 68

CREATE TABLE dbo.CustomKeyAttr (
PKCustomKeyAttr int NOT NULL,
CustomerEmail nvarchar (100) NOT NULL,
CONSTRAINT PK CustomKeyAttr PRIMARY KEY CLUSTERED (
PKCustomKeyAttr ASC
)
)

ALTER TABLE dbo.CustomKeyAttr

ADD CONSTRAINT FK CustomKeyAtt SureKey

FOREIGN KEY (PKCugtomKeyAttr) B

REFERENCES dbo.SureKey (PKSureKey) ON DELETE CASCADE

Custom Data Table in InstallKey Database

Sample Use Case

As an example, suppose that you want to have the user provide their email address and have the email
address sent to the server as part of the validation process. This value can be added as a property bag
value, sent to the server and stored in a custom database table.

The code below will put an email value into the property bag. The property bag will be included in the
surety that is sent securely to the server.

EnumValidateResult Validate (ClientSideValidator cv,
string keyValue, string emailAddress) {
EnumValidateResult result;
IDictionary<string, object> initalPropertyBag;

initalPropertyBag = new Dictionary<string, object>();
initalPropertyBag.Add ("EMailAddress", emailAddress) ;

result = cv.ValidateAgainstServer (keyValue, initalPropertyBag);
return (result) ;

Add Content to the Property Bag before Validation
The code below is from a PostValidate implementation that will read the content from the property bag,

and store the value in a custom database table. The code below assumes that you have created a custom
table using the SQL code above.

LomaCons InstallKey 69

public class CustomPostValidate : IPostValidate {

public CustomPostValidate () {
return;

}

public void PostValidate (string keysetName, string sureKey,
int pkUsageValidation, IDictionary<string, object> propertyBag) {
int pkSureKey;

if (propertyBag.ContainsKey ("EMailAddress") == false)

return;
pkSureKey = GetPrimaryKeyOfSureKeyFromUsageValdiation (pkUsageValidation);
PersistEMailAddress (pkSureKey, propertyBag["EMailAddress"].ToString());
return;

}

private void PersistEMailAddress (int pkSureKey, string emailAddress) {
SglConnection conn;
SglCommand cmd;
StringBuilder sb;

sb = new StringBuilder();
sb.Append (@"IF EXISTS (SELECT * FROM dbo.CustomKeyAttr ");

sb.Append (A"WHERE PKCustomKeyAttr = @pkSureKey) ");

sb.Append (@"BEGIN ") ;

sb.Append (@"UPDATE dbo.CustomKeyAttr SET CustomerEmail = @emailAddress ");
sb.Append (A"WHERE PKCustomKeyAttr = @pkSureKey ");

sb.Append (@"END ELSE BEGIN ");

sb.Append (@"INSERT INTO dbo.CustomKeyAttr (PKCustomKeyAttr, CustomerEmail) ");
sb.Append (@"VALUES (@pkSureKey, @emailAddress) ");

sb.Append (@"END") ;

conn = new SglConnection (
ConfigurationManager.ConnectionStrings|["InstallKey"].ConnectionString) ;
using (conn) {
conn.Open () ;
cmd = new SglCommand() ;
using (cmd) {

cmd.Connection = conn;
cmd.CommandType = CommandType.Text;
cmd.CommandText = sb.ToString();

cmd.Parameters.Add (new SglParameter ("@pkSureKey", pkSureKey));
cmd.Parameters.Add (new SglParameter ("@emailAddress", emailAddress));
cmd.ExecuteNonQuery () ;
}
conn.Close () ;
}
return;

}

private int GetPrimaryKeyOfSureKeyFromUsageValdiation (int pkUsageValidation) {
SglConnection conn;
SglCommand cmd;
object result;
StringBuilder sb;

sb = new StringBuilder();
sb.Append (@"SELECT ku.FKSureKey as PKSureKey ");
sb.Append (@"FROM dbo.KeyUsage as ku INNER JOIN ");
sb.Append (@"dbo.UsageValidation as uv on uv.FKKeyUsage = PKKeyUsage ");
sb.Append (@"WHERE uv.PKUsageValidation = @pkUsageValidation");
conn = new SglConnection (
ConfigurationManager.ConnectionStrings["InstallKey"].ConnectionString) ;
using (conn) {
conn.Open () ;
cmd = new SglCommand() ;
using (cmd) {
cmd.Connection = conn;
cmd.CommandType = CommandType.Text;
cmd.CommandText = sb.ToString() ;

LomaCons InstallKey 70

cmd.Parameters.Add (
new SglParameter ("@pkUsageValidation", pkUsageValidation)) ;
result = cmd.ExecuteScalar();

}

conn.Close () ;

}

return (Convert.ToInt32 (result));

Post Validate Implementation

After the validation has completed, the client side code below reads the values from the property bag
after validation and shows a result to the user. This code can be called any time after validation because
the value is stored securely in the local surety.

public void ShowEMailAddress (ClientSideValidator cv) {

if (cv.IsValidated == false)
return;
if (cv.LocalSuretyContent.PropertyBag.ContainsKey ("EMailAddress") == false)
return;
MessageBox.Show (cv.LocalSuretyContent.PropertyBag["EMailAddress"].ToString()) ;
return;

Read Content from Property Bag after Validation

LomaCons InstallKey 71

12. Demos and Expiring Trials

Trial Validation is done on a key specific basis where an optional trial expiration date can be assigned to a
key. The expiration date can be securely validated anytime, using the same key validation methods.

Defining the Trial Expiration Date

On the Sure Key Edit page or the Add Sure Key page, the date that the trial expires can be assigned to the
key using the Trial Expires field. If the field is left blank, the key will not expire.

Trial Use Case

The use case that follows is similar to the use case presented in the prior chapters. In this use case the
sure key is evaluated and the trial expiration date is compared to the current date using the IsTrial and
TrialExpires properties of the validated surety. The distribution is considered to be valid if the surety is

both valid and the trial has not expired.

private const string keysetName = "...";

private const string password = "...";

private const string factor = "...";

private const string validationCode U009

private const string validationUrl = @"http://.../InstallKeyWeb/Validator.svc";
/// <summary>

/// Validates that the application is validated. Will validate against
/// the server if the local surety file is not found or is not valid
/// </summary>

/// <returns>

/// true if the surety and trial date are valid, false otherwise

/// </return>

public bool Validate () {
ClientSideValidator validator;
string key;
EnumValidateResult result;

// create an instance of the ClientSideValidator
validator = new ClientSideValidator (_keysetName,
validator.SetServiceAddress(_validationUrl) ;

// check to see if the surety already exists and

object

is wvalid

if (validator.IsValidated) {
// already validated - now check for expired
return(validator.IsTrialExpired (EnumIsTrialMethodology.ServerThenLocal)) ;
}
key = PromptUserForKey () ;

// check to see if the user typed in the key correctly
if (validator.DoesKeyMatchKeyset (key) false)
return (false);
// validate the key against the server
result = validator.ValidateAgainstServer (key);
// check the result

if (result == EnumValidateResult.OK) {

// validated - now check for expired

return (validator.IsTrialExpired (EnumIsTrialMethodology.ServerThenLocal)) ;
}
return (false);

Trial Expires Date Sample

Evaluating the Expiration Status

_password, _factor, _validationCode);

The IsTrialExpired method is used to evaluate the trial expiration date based on the trial date stored in the

surety and the current date. The source of the current date used for the comparison is defined by the
methodology enumeration parameter.

LomaCons Installkey

72

Local Only — the date in the surety is compared to the local system date.

Server Only — the date in the surety is compared to the date as provided by the server. For this to work,
the system must be able to connect to the validation web service. Because the date is compared against
the date on the server, it will not be possible for the user to circumvent the expiration date by changing

the current date on the local machine.

ServerThenLocal — the date in the surety is compared to the date on the server. If there is an exception
when retrieving the date from the server, the local time will be used instead.

When using the date from the server, date is provided by a call to the Validator.svc web service. By using
the date from the server (rather than the local system date) it is harder for the user to bypass an expired
date by changing the local system date. However, this means that the user must have an internet
connection in order to evaluate the trial status.

Attempting to Bypass the Trial Date

When using the Local Only setting, the easiest way to bypass an expired trial date, is for the user to
change the system date. For this reason it is important not to rely exclusively on the local time.

The server time is more difficult to bypass. Because the current date is from the server, the user cannot
change it. Similar to the validation surety, the date returned from the server contains a validation code
that is used to validate that the date was not tampered with. Attempting to modify the date or the
validation code will cause the date to become invalid.

Expiration Timespan

Another variation on the trial dates would be to define a date that expires “x” number of days, weeks or
months from the first validation or usage. A future release of InstallKey will include this functionality.
However, this can be implemented today by writing some custom code to extend the functionality of
InstallKey to fit your needs.

To implement this, you will need to understand how to extend InstallKey and a basic understanding of the database relationships.

You should review and understand the chapters on adding Custom Key Properties and Customizing the Validation Process before
implementing the expiration timespan.

Using one or more of the following guidelines and ideas, you can easily add this functionality to your
implementation of InstallKey.

e Create a custom key property to indicate that the key expires on a timespan.

e C(Create a PostValidate method. In this post validate method determine if the key expires on a
timespan. If it does, calculate the expiration date from the first usage date and put the
expiration date in the surety property bag.

e Inyour client code, after calling the IsValidated property, retrieve the expiration date from the
surety property bag, and determine if the time has expired.

e To retrieve the custom key property from within your PostValidate method, execute a query
against the InstallKey database using the pkUsageValidation parameter provided by the post
validate calling code. By joining the UsageValidation, KeyUsage, SureKeyProperty and
PropertyDefinition tables, you can determine if the key contains your custom property. A sample
query is below.

LomaCons InstallKey 73

SELECT
skp.Value
FROM
dbo.UsageValidation AS uv
INNER JOIN
dbo.KeyUsage AS ku ON uv.FKKeyUsage = ku.PKKeyUsage
INNER JOIN
dbo.SureKeyProperty AS skp ON ku.FKSureKey = skp.FKSureKey
INNER JOIN
dbo.PropertybDefinition AS pd ON skp.FKPropertyDefinition = pd.PKPropertyDefinition
WHERE
uv.PKUsageValidation = @pkUsageValidation
AND
pd.Name = @propertyName

Sample Custom Property Query

e Toretrieve the first usage date for a unique validation from within your PostValidate method,
execute a query against the UsageValidation table using the pkUsageValidation parameter.

SELECT
MIN (uv.ValidationDateUtc) as FirstUsageValidationDateUtc
FROM
dbo.UsageValidation as uv
WHERE
uv.FKKeyUsage IN (
SELECT FKKeyUsage
FROM dbo.UsageValidation
WHERE PKUsageValidation = (@pkUsageValidation

Sample First Usage Query

Keyless Trial

Another variation on the expiring timespan is a keyless trial, where the distribution expires even if the
user removes and re-installs the distribution.

The use case for a keyless trial is one where you freely give away your distribution, and the distribution
expires “x” number of days after it is first used unless the user obtains a key. In this scenario, the person
who uses your software distribution does not need to obtain and enter a key before using the software

distribution.

However, to implement this, a key still needs to be validated in order to securely record the unique
system identifiers with the InstallKey server. Follow these ideas and guidelines to implement this
“transparent validation” by extending InstallKey with custom code to meet your business needs.

e Implement an Expiring Timespan using the methodology described above.

e C(Create a sure key with an expiring timespan using the Key Management web application, or API.
This will be the “transparent key” The user will not need to see the key or be aware of the
existence of this key.

e Use the ClientValidator in the distribution to validate just as you would any other key that you
generate and provide to a user. But, instead of prompting the user to enter a sure key — validate
using the transparent sure key. This 30 character sure key can be hard coded, or you may want
to put this key in the app.config file. But wherever you store the key, the user should not need to
enter the key.

e Provide a way for the user to enter a key to unlock the software.

LomaCons InstallKey 74

13. InstallKey Server API

An APl will allow programmatic manipulation of the keys and keysets from your custom applications
written in C# or Visual Basic .Net. (Although all the samples and descriptions that follow are written in C#,
the API can be called from VB.Net just as well.) The most common usage is to be able to
programmatically create keys. To use the API, you will need your API Private Key and a Login with the API
Access rights.

The diagram below shows the components and interactions of the InstallKey API. The API is implemented
as an http based WCF web service that allows your application to connect and update the content from
any system that has access to the web service endpoint. The descriptions that follow describe the
components in more detail.

Your Application

Lomacons.InstallKey.ClientSide.dIl

A
API Private Key

/—LomaCons.lnstaIIKey.Web website ~

P

ApiProcessor.svc

API Private Key

Business Layer

Data Access Layer

InstallKey

Database
(SQLServer)

InstallKey API Architecture

Your Application

Your application will reference the InstallKey Client Side dll assembly. The Client Side assembly
encapsulates the API calls and provides easy to use methods that hide the complexity of calling the API
web services. The API can be called from C# or Visual Basic .Net.

API Key

The API key is a private key that is known by the InstallKey server and your calling code. It is not
transmitted over the web service connection. However, this private key is used to encrypt a validation
code that is used to confirm that the content sent to and from the server was not modified.

LomaCons InstallKey 75

Every instance of the InstallKey Web application will have a unique API Key. This key can be found by
viewing the System Settings on InstallKey web application. This value is uniquely generated and does not
change.

APl SETTINGS

The value below is the private key that your calling code will utilize when making API calls to programatically manage keysets and

keys.

API Key
KYFSTUMC9sYRRbWMkHGE5IxM3

API Settings viewed from the System Settings

LomacCons.InstallKey.Web website

The InstallKey website is the host for the ApiProcessor web service. This ApiProcessor web service is
responsible for validating the request, processing the request and returning a response to the caller. Your
code will not call this web service directly. Rather, the code in the client side assembly will negotiate
these details.

Business Layer and Data Access Layer

The business layer and data access layers contain the core logic for creating and managing keys. It is used
by both the API Processor and the InstallKey web application to provide good code reuse and to ensure
consistency.

Security of the API

The API transmits data to and from the server in the clear accompanied by a validation code. This
validation code ensures that the API calls and content is not tampered with as it moves from the caller to
the server and back. Any attempt to modify the content will result in an error and a .Net exception will be
thrown.

Although the data cannot be modified and is safe from tampering, the content sent to and from the web
service can be seen if someone is viewing the raw content as it travels across a network. If your
connection to the APl is internal, on the same machine, or within an intranet environment, then
transmitting the data in the clear is not likely to be an issue. However, if your connection to the API
service is over the internet, you may want to consider running the ApiProcessor service over HTTPS.
Calling the APl methods over a secure channel will ensure that the content cannot be read or viewed.

HTTPS configuration and setup is covered in the installation chapter above, and must be enabled in the
web.config before the API methods can be called over HTTPS. To configure your client code for https, you
call the Api constructor passing in the URL to the API service. The API constructor will automatically detect
if the URL scheme is http or https and adjust the client endpoint binding accordingly.

Sample

The following is a simple code snippet of how to create an instance of the Api object and create a key
using C#.

LomaCons InstallKey 76

// this method creates a surekey and returns the readable key value
public string CreateKey() {

// local variables

Api api;

ApiKeyset keyset;

int pkSureKey;

ApiSureKey sureKey;

// Create an instance of the Api object. The url, private key and login are for this

// sample - the real values that work in your environment will be different.

api = new Api(@"http://localhost/LomaCons.InstallKey.Web/ApiProcessor.svc",
"KYfSTUmMC9sYRRbWMkH6SIxM3", "admin", "Xyz6284$");

// get the keyset object for the MyFirstKeyset keyset (again, your keyset name may
// be different)
keyset = api.ReadKeyset ("MyFirstKeyset");

// create a sure key for a new customer with a violation limit of four
pkSureKey = api.CreateSureKey (keyset.PKKeyset, "George Herman Ruth", 4, null, null);

// get the sure key object for the newly created key
sureKey = api.ReadSureKey (pkSureKey) ;

//return the 30 character readable key

return (sureKey.KeyValue);

}

A fully functional, sample web application is included as an example of how the various method calls can
be used to view, retrieve update and delete InstallKey content. This sample called ApiSample contains
working examples of every API call.

Api Object
Before any methods can be called, an instance of the Api object must be created. To create the Api

object, call one of the constructors, providing the service information, api private key, and login
information.

Constructors
public Api(string serviceUrl, string apiKey, string loginName, string password)

This constructor will create an instance of the Api object. The serviceUrl is url of the ApiProcessor.svc web
service endpoint. The apiKey is the private key for the Api as defined by the system settings. The key will
be unique to the installation of InstallKey. The login name and password is the login that will be used by
the service and it must have the Allow Api access right.

public Api (Uri serviceUrl, string apiKey, string loginName, string password)
This constructor will create an instance of the Api object, and allows you to pass the Url as a Uri object.

public Api (Binding binding, EndpointAddress endpointAddress, string apiKey, string
loginName, string password)

This constructor will create an instance of the Api object and allows you to define a custom binding and
endpoint.

Api Properties and Methods

The following is a brief list and description of the Api Properties and methods.

LomaCons InstallKey 77

Server Version

Version ServerVersion

This property will retrieve the version of the InstallKey server.

Read Keyset

ApiKeyset ReadKeyset (int pkKeyset)

This method is used to retrieve the Keyset and its Property Definitions for the keyset identified by the
primary key provided. It will return an ApiKeyset object.

ApiKeyset ReadKeyset (string keysetName)

This method is used to retrieve the Keyset and its Property Definitions for the keyset identified by the
keyset name provided. It will return an ApiKeyset object.

Read Keysets

This method returns a collection of ApiKeyset objects. The collection will not contain Property Definitions.
To retrieve the Property Definitions, call the ReadKeyset() method for the individual keyset.

IList<ApiKeyset> ReadKeysets (KeysetFilter filter, KeysetSort sort, int skip, int limit)

This method is used to query for a list of keysets as defined on the server. Filter is used to describe the
records to search for. Sort defines the sort order of the values returned. Skip and limit are used to define
the subset of objects that match the filter and sort.

IList<ApiKeyset> ReadKeysets (IEnumerable<KeysetFilter> filters,
IEnumerable<KeysetSort> sorts, int skip, int limit)

This method is used to query for a list of Keysets using multiple filters and sorts. The filters will be
combined to produce an “AND” style query. The sorts will be applied in the list order. Skip and limit are
used to define the subset of objects that match the filter and sort.

Read Keysets Count
int ReadKeysetsCount (KeysetFilter filter)

This method will return the number of records that match the filter.
int ReadKeysetsCount (IEnumerable<KeysetFilter> filters)
This method will return the number of records that match the filters.

Read Sure Key
ApiSureKey ReadSureKey (int pkSureKey)

This method is used to retrieve the Sure Key and its Properties for the sure key identified by the primary
key provided. It will return an ApiSureKey object.

Read Sure Keys

The objects in the collection will not contain any properties, even if there are properties on the sure key.
To retrieve the Properties, call the ReadSureKey() method for the individual sure key.

LomaCons InstallKey 78

IList<ApiSureKey> ReadSureKeys (SureKeyFilter filter, SureKeySort sort,
int skip, int limit)

This method is used to query for a list of sure keys as defined on the server. Filter is used to describe the
records to search for. Sort defines the sort order of the values returned. Skip and limit are used to define
the subset of objects that match the filter and sort that will be returned.

IList<ApiSureKey> ReadSureKeys (IEnumerable<SureKeyFilter> filters,
IEnumerable<SureKeySort> sorts, int skip, int limit)

This method is used to query for a list of Sure Keys using multiple filters and sorts. The filters will be
combined to produce an “AND” style query. The sorts will be applied in the list order. Skip and limit are
used to define the subset of objects that match the filter and sort that will be returned.

Read Sure Keys Count
int ReadSureKeysCount (SureKeyFilter filter)
This method will return the number of records that match the filter.
int ReadSureKeysCount (IEnumerable<SureKeyFilter> filters)
This method will return the number of records that match the filters.

Create Sure Key

int CreateSureKey (int pkKeyset, string customerName, int violationLimit,
DateTime? trialExpiresDate, IEnumerable<ApiSureKeyProperty> properties)

This method will create a new Sure Key and will return the primary key of the newly created Sure Key.
After the key has been created, call the ReadSureKey method to retrieve the readable 30 character key
value.

Update Sure Key Customer Name
void UpdateSureKeyCustomerName (int pkSureKey, string customerName)

This method will change the customer name on a sure key.

Update Sure Key Violation Limit
void UpdateSureKeyViolationLimit (int pkSureKey, int violationLimit)
This method will change the violation limit on a sure key.
Update Sure Key Trial Expires Date
void UpdateSureKeyTrialExpiresDate (int pkSureKey, DateTime? trialExpiresDate)
This method will change the trial expires date on a sure key.
Update Sure Key Is Revoked
void UpdateSureKeyIsRevoked (int pkSureKey, bool isRevoked)

This method can be sued to revoke a sure key, or it can be used to remove the revoked setting on a sure
key.

LomaCons InstallKey 79

Delete Sure Key

void DeleteSureKey (int pkSureKey)

This method will delete a sure key and all records related to the sure key. Once the key has been deleted,
it cannot be restored or recreated.

Create Sure Key Property

int CreateSureKeyProperty (int pkSureKey, int pkPropertyDefinition, string value)

This method is used to create a custom property value on a sure key. The value for pkPropertyDefinition is
the primary key for the property definition.
Update Sure Key Property

void UpdateSureKeyProperty (int pkSureKey, int pkSureKeyProperty, string value)

This method is used to change the value on a sure key property.

Delete Sure Key Property

void DeleteSureKeyProperty (int pkSureKey, int pkSureKeyProperty)

This method is used to remove a property from a sure key.

API Errors and Exceptions

Any time an error occurs during an APl method call on the server, an InstallKeyException will be thrown
on the client side. Your calling code should handle these exceptions as you need.

All .Net exceptions have a Message property that is used to contain descriptive details about the error
condition. However, this detail can become a security risk when someone attempts to glean system
information from the errors by attacking the web service directly. Therefore, the message contents for
APl exceptions are intentionally ambiguous and contain no details.

However, during your testing and debugging you may want to see the details for the error messages. To
see these, edit the web.config and change the ApiReturnErrorMessages setting to true. This will allow you
to see the details in the Message property. After your development is complete, change the
ApiReturnErrorMessages setting back to false.

LomaCons Installkey 80

14. Key Usage Invalidation

Key usage invalidation is the opposite of key validation. This process invalidates the local surety and
removes the unique usage records from the server.

Invalidation Use Case

The typical use case is where a client validates a key, and sometime later wants to move the usage of the
key to a different environment that will have different system identifiers. In this scenario, the key must
be invalidated in the old environment, and the corresponding usage and identifier values must be
removed from the InstallKey server, before the key can be validated on the new environment.

Invalidation of a Key Usage
The code below demonstrates how to invalidate a key usage from your client side code.

public bool InvalidateUsage () {
ClientSidevValidator validator;
EnumInvalidateUsageResult result;

// create an instance of the ClientSideValidator object

validator = new ClientSideValidator (_keysetName, password, factor, _validationCode);
validator.SetServiceAddress(validationUrl) ;

// check to see if the current local surety exists and is valid

if (validator.IsValidated == false) {
return (false); // there is no local surety to invalidate
}
// invalidate - remove the usage from the server and clear the local surety

result = validator.InvalidateUsageAgainstServer () ;

// check the result

if (result != EnumInvalidateUsageResult.OK) {
return (false);

}

// ok — usage successfully invalidated
return (true);

Invalidate Code Sample

In the code above an instance of the ClientSideValidator object is created, the Service address is set, and it
confirms that the current local surety is valid. Then the InvalidateUsageAgainstServer method is called to
remove the usage and effectively decrement the usage count.

The InvalidateUsageAgainstServer method encapsulates the entire process and performs the following
actions, in this order.

Retrieves the current local system identifiers.

Retrieves the local surety from SuretyStorage.

Confirms that the current identifiers match the identifiers in the local surety.
Invalidates the local surety.

Creates a surety object containing the sure key and the current system identifiers
Sends the surety object to the server via the Validator.svc web service.

The web service retrieves the usages and identifiers for the sure key from the database.

O N o U B W N R

The web service compares the identifiers in the surety with the identifiers from the database. The
corresponding usage record is found.

9. The key usage record is deleted from the database. This also deletes the related child Validation and
Identifier records from the database.

LomaCons InstallKey 81

10. The web service responds back with an OK status.
11. The InvalidateUsageAgainstServer method returns OK.

The end result is that the local surety is invalidated and the corresponding usage on the server has been
removed and the usage count is decremented.

Result Codes and Error Handling

In the sample code snippet above, the returned result is compared against EnumlinvalidateUsageResult.Ok
to indicate a Boolean result. This is acceptable in a simple scenario; however, you might want to use the
enumeration result to provide additional feedback to the user or other handling specific to your
application.

Below is the description of the invalidate result codes, what they are indicative of, and why they might
occur.

EnumlinvalidateUsageResult.Ok

This value indicates that the usage invalidation against the server was successful. The usage and unique
identifiers were successfully removed from the server, the usage count was decremented, and the local
surety was also invalidated.

EnumlinvalidateUsageResult.InvalidKey

This value indicates that the corresponding sure key that was used to create the local surety was not
found on the server and the key record does not exist on the server. Typically this happens because the
key was deleted on the server.

The locally stored surety will still be valid if the key is invalid. Depending on how you want to handle this
condition, you may or may not want to call the InvalidateLocalSurtey method to remove the local surety.

EnumlinvalidateUsageResult.NotFoundOnServer

This value indicates that a unique usage that matches the current identifiers was not found on the server.
This condition could happen if the user invalidates the usage, restores the surety file and then invalidates
the usage again.

The locally stored surety will still be valid if the usage was not found on the server. It is recommended
that you call the InvalidateLocalSurtey method to remove the local surety, when this condition occurs.

Risks of Usage Invalidation

The risk to usage invalidation is the ease to which a user can circumvent the usage validation counts to
use a key for more usages than allowed. A knowledgeable user may figure out that they can easily
validate against the server, backup the surety, invalidate against the server and restore the surety. The
user may or may or may not intentionally do this; the user might do this unintentionally by restoring a
personal backup. The net effect of this is that the user will have a valid local surety, without a
corresponding usage on the server.

If you utilize usage invalidation, you should consider the business implications and use the methodology
that best fits your business needs and requirements. Consider one or more of these methods to mitigate
the opportunity for a user to violate the key validation process by invalidating the key.

Do Nothing

This really is not a mitigating factor. In many scenarios this will be a perfectly acceptable risk, as this is the
reason that you want to implement usage invalidation! You should consider how often will this really
occur? How likely is it for your typical user to violate the key usage limitation by inadvertently restoring a
backup of the surety? If this is not likely, and you trust that most users will be honest, doing nothing will
be ok.

Surety Storage Location

LomaCons InstallKey 82

You can implement a custom surety storage which will store the surety in a different location, making it
less likely that the user will be able to restore a backup of the surety. This does not completely mitigate
the chance for misuse, but it may make it more unlikely to occur.

Revalidate Periodically

Revalidating a key is the only way to truly mitigate the possibility for a user to misuse the key invalidation.
You can revalidate the key against the server periodically, by calling the ValidateAgainstServer method, to
ensure that the local surety has a corresponding usage on the server. This may already be happening
anyway, depending upon how you have implemented InstallKey in you distribution.

The local surety contains the key that the user used to validate the first time, and this call to
ValidateAgainstServer can be done transparently, perhaps whenever the application is started, or every
few days to revalidate and refresh the key on the server. The downside to this is that the application
must always have a connection to the internet; otherwise the lack of such a connection might frustrate
your honest user. The more frequent you require your user to re-validate, the more likely the validation
may annoy or make the user feel like the validation is “getting in the way.”

Do Not Invalidate Usages

Another mitigating factor is to just not implement the invalidation of key usages in your application. By
not invalidating the usage, you will force the user to contact you when they need to exceed their current
violation limit. At this point you can increment the usage limit for the key on the server and the user will
then be allowed to validate the key for another usage. (It’s up to you to define you own human processes
for how to handle this.)

LomaCons Installkey 83

15. Custom ldentifiers and Matching

By default, InstallKey uses the Hard Disk, Bios, Network Adapter and the Processor ID as the source of the
unique identifier values. For some use cases, this is more than enough; while in others, you may want to
add additional identifiers. Or in other cases, you may want to replace all the default identifiers with
identifiers of your own.

The default matching algorithms compare the current identifier values against the identifier values stored
in the surety or against the identifier values stored in the database to ensure that a minimum number of
matches exist. When calling the IsValidated property, the current identifiers are queried from the
machine hardware and are compared against the identifiers stored in the surety. When calling the
ValidateAgainstServer method the current identifiers are queried from the machine hardware and are
sent to the server where they are compared against the identifiers stored in the database from prior key
validations.

InstallKey provides interfaces that when implemented, allow you to modify or replace the default
identifiers and matching algorithms. This provides unlimited possibilities for implementing custom
identifiers and matching algorithms. For an example of how to implement custom identifiers, see the
Web Application Sample.

The lldentifierFinder Interface

The lldentifierFinder interface is used to provide one or more of a single type of custom identifiers to the
IdentifierFinders collection of the ClientSideValidator object. These identifier values are stored in the
surety and validated against those values already on the server.

To provide your own identifiers, you will need to add one or more classes that implement the
IldentifierFinder interface to the IdentifierFinders collection of the ClientSideValidator object. Each
IdentifierFinder implementation returns zero or more identifier values. Multiple, custom lldentifierFinder
types can be added to the IdentifierFinders collection. Also, any or all of the default identifiers can be
removed.

In the examples that follow, InstallKey is being used to validate against only the machine name. This
would result in a unique key usage for each machine where a key is validated that is based only on the
machine name. To do this, the default identifiers will be removed and the custom machine name
identifier finder will be added. Please notice that this is just an example on how to modify and use the
identifiers and matching algorithms. The machine name may not necessarily a good identifier as it can
easily be changed by the user.

The first step is to create a MachineNameFinder object that implements the lidentifierFinder interface.

LomaCons Installkey 84

public class MachineNameFinder : IIdentifierFinder{

public IList<InstallIdentifier> GetIdentifiers() {
List<InstallIdentifier> list;
InstallIldentifier identifier;

list = new List<InstallIdentifier>();
identifier = new InstalllIdentifier (
"MachineName", Environment.MachineName) ;
list.Add (identifier) ;
return (list);

}

public string Name {
get { return ("MachineNameFinder"); }

}

An IldentifierFinder Implementation

Next the default identifiers must be removed and replaced with the custom MachineNameFinder. The
code snippet below shows how to replace the default identifier finders with the custom
MachineNameFinder.

string password = "..";
string keysetFactor = "<keyset><Name>MyKeyset</Name>.. ..</keyset>";

ClientSideValidator cl;
IIdentifierFinder finder;

cl = new ClientSideValidator (password, keysetFactor);
cl.IdentifierFinders.Clear () ;

finder = new MachineNameFinder () ;
cl.IdentifierFinders.Add (finder) ;

Adding the Custom Identifier Finder

Now when the IsValidated property or the ValidateAgainstServer method is called, InstallKey will use the
custom identifiers instead of the default identifiers.

Identifier Matching

Identifier matching is defined in the web application on the keyset by setting the minimum identifier
matches when the Keyset is created. This matching compares the set of hashed values against those
values stored in the database or the hashed values stored in the local surety. This occurs both on the
server and on the client.

On the server, when a key is validated, the set of identifier hashed values are compared against the
hashed values that were stored in the database on prior validations.

If the number of matches is less than the min number allowed for the keyset, then the server assumes
that this is a new validation of the key. If the violation limit has not been met, the usage count is
incremented and the new set of identifiers is stored in the database.

If the number of matches is greater than or equal to the min number allowed for the keyset, the server
assumes that this is a revalidation of the key and does not increment the usage count.

On the client, when the local surety is validated, the matching is used to confirm that the application has
not been moved or modified. The set of identifier hashed values from the surety are compared against
the hashed values from the current environment, as provided by the Identifier Finders. If the number of
matches is greater than or equal to the min number allowed, then the IsValidated property will return
true. If the min number is less, then the IsValidated property will return false.

LomaCons Installkey 85

Custom Identifier Matching

Your business requirements for matching may be more than a simple count. For this reason, the ability to
create your own custom identifier matching logic on both the client and server will be exposed as a public
interface where you can add your own code.

Coming Soon! - This feature was excluded from the initial release of InstallKey version 5. It will be added
to InstallKey in a near future release.

LomaCons Installkey 86

16. Web.config Settings

InstallKey is configured by default to provide secure error messaging and the best performance, and
should not need to be modified. However, depending upon your implementation and requirements, you
may want to change these settings. The following list describes the AppSettings values in the web.config
file that you can change. Keep in mind that if you change the default settings, you do so at your own risk
as described below.

ApiReturnErrorMessages
The ApiReturnErrorMessages can be set to true or false. The default is false.

Warning — setting this value to true in a production environment may allow someone who attacks the api service to glean system
information. For this reason, this value should always be false in a production environment.

This setting effects the functioning of the error messages in the api calls. If any errors or exceptions occur
on the server during an API call, the client side exception will not contain any detailed error information.
To force the server to include the details, set this value to true. This may be helpful for debugging in your
test or development environments.

ApiKeysetPropertiesLimit
The ApiKeysetPropertiesLimit can be set to any positive integer value. The default is 0.

Warning — changing this value will decrease the performance of the ReadKeysets api method call by adding the additional overhead
of retrieving, populating and returning the additional content from the database.

This setting affects the functioning of the ReadKeysets() api call. By default the collection of ApiKeyset
objects that are returned will not contain any Property Definitions. This is done to allow for the best
performance.

However, your custom code might want to be able to see the property definitions on the returned
ApiKeyset objects. To return the property definitions, change this value at the risk of affecting
performance. The larger this value is the greater the risk that the API call will take longer to return. If you
modify this value, it is recommended that you do not set this value over 50.

ApiSureKeyPropertiesLimit
The ApiSureKeyPropertiesLimit can be set to any positive integer value. The default is 0.

Warning — changing this value will decrease the performance of the ReadSureKeys api method call by adding the additional overhead
of retrieving, populating and returning the additional content from the database.

This setting affects the functioning of the ReadSureKeys() api call. By default the collection of ApiSureKey
objects that are returned will not contain any Properties, even when there are properties. This is done to
allow for the best performance.

However, your custom code might want to be able to see the property definitions on the returned
ApiSureKey objects. To return the properties, change this value at the risk of affecting performance. The
larger this value is the greater the risk that the API call will take longer to return. If you modify this value,
it is recommended that you do not set this value over 50.

LomaCons InstallKey 87

17. Hosted Deployment

InstallKey is designed such that the InstallKey web application can be deployed to any third party hosting
provider. The web application utilizes basic ASP.Net functionality, WCF and SQL Server database access
logic that all hosting providers can be expected to support.

Hosted deployment is typically a manual process, and may require the source code edition of InstallKey
and some additional skill. However, if you are comfortable creating IIS virtual folders, configuring ASP.Net
web applications and managing SQL server databases with your favorite hosting provider, you should not
have any problems. Just follow these steps and guidelines.

The process of deploying the InstallKey web application will vary depending on your hosting provider’s
toolset. However, the same methodology that you would use to create and deploy other ASP.Net web
applications is the same process that you will use for deploying InstallKey. Please consult your hosting
provider’s documentation for instructions on how to create virtual folders, web applications, upload
content files, and manage SQL Server databases. Once you are comfortable with your hosting provider’s
processes and tools, you will be able to deploy InstallKey.

The common steps to deploy the web application are as follows.

1. Create the InstallkKey SQL Server database in your hosting provider’s environment using your hosting
provider’s tools and methods. Execute the InstallKeyDatabase.sql script to build the tables, views and
other schema. Or if your provider allows, you can backup and restore an existing copy of the
database created locally.

2. Using your hosting provider’s tools, create the SQL Server credentials that the InstallKey web
application will use to read and write to/from the database. Give these credentials access to the
database.

3. Using your hosting provider’s tools, create the web application and/or virtual folder for the InstallKey
web application. Copy the application files and folders.

4. Edit the InstallKey web.config file. Set the connection string to the proper SQL Server database and
credentials.

5. Ifallis set up and configured properly, you should now be able to open a browser window to your
installation of InstallKey. You should be able to navigate to the log in page and log into the web
application.

6. From the Validation page, apply your key to validate your installation to your hosting provider’s
server so that you can create an unlimited number of keysets and sure keys.

Test your deployment. If all is correctly installed, you should be able to view the Admin web pages, create
keysets and keys, and validate keys. Once installed, you can validate your key to remove the demo
restrictions.

Validation note — InstallKey uses InstallKey validation and the server hardware identifiers to uniquely identify the installation, so this
may have an effect when validating your key for InstallKey. In most cases, there should not be an issue. However, some web hosting
providers may lock down and prevent access to WMI calls, thus preventing your deployment from validating your InstallKey surety at
runtime and from the key validation page. Or, your hosting provider may dynamically move your web site to another server, which
may result in a change to the identifiers. If this were to happen, it will only prevent you from creating new keys, although this will not
affect the validation of existing keys. If this is an issue, it can be resolved if you purchase and rebuild the InstallKey web application
source code to remove the InstallKey activation.

LomaCons Installkey 88

18. Rebuilding the Source Code

If you purchased the source code for InstallKey, you will be able to rebuild the web application and client
side dlls using Visual Studio 2010 or newer.
Keep in mind that you are still bound by the LomaCons InstallKey license agreement when you rebuild the source code. If you rebuild

the LomaCons.InstallKey.Common.dll and LomaCons.InstallKey.ClientSide.dll you must obfuscate these dlls to redistribute them with
your application. In addition, you cannot redistribute or resell any of the server side code, database schema or database logic.

To rebuild the web application and client side dlls, unzip the InstallkeySource.zip file. Open the
InstallKey.slIn file with Visual Studio, and rebuild the solution.

No source code changes are needed to remove the InstallKey license validation. Once you have rebuilt
the source code, the resultant web application does not require key validation against the LomaCons key
validation server to remove the demo limitations. The rebuilt application will be able to create an
unlimited number of keysets and keys.

LomaCons Installkey 89

19. Upgrading from InstallKey 4.2 or 3.4

Starting with version 5.0, it was not possible to maintain 100% backwards compatibility with prior releases
of InstallKey. The differences in .Net web services, and a desire to modernize InstallKey, have resulted in

a decision to make a clean break from prior versions.

The most significant change is that the .asmx web services that have been used for validating keys since
version 1.0 of InstallKey have been replaced with modern .Net 4.0 based WCF services. This means client
code based upon the InstallKey 4.2 (or earlier) client side dlls cannot validate against the InstallKey 5
server. The recommended way to maintain compatibility is to have two validation websites.

For example, you will keep your current InstallKey 4.2 (or 3.4) web application installation running
version 4.2, which can be used to validate prior releases of your software, and a new web application
running version 5 for validating new releases of your software that contain the new client side code.

Although not fully backward compatible with prior versions, there are two upgrade paths that will allow
you to carry your keysets, keys, identifiers and usage counts from Version 3.4 and 4.2 forward into version
5. This allows you to manage and validate the same 30 character keys in both versions of InstallKey.

Full Migration

One upgrade method is to do a full migration of the InstallKey database content. To do so, you will need
to copy the database values from the prior version of InstallKey to the database used by the new version.

Copying the database content from prior versions to the new version can be done using your database
tools or an SSIS package. Map the values from the prior database to the new database following tables
below. Creation of the code to migrate the content is not provided but can be easily created following

the guidelines below.

The primary key values in the version 5 database will be created automatically by the SQL Server identity
insert and must be mapped to the corresponding foreign key columns in the new tables. The primary key
and foreign key values are arbitrary and do not need to be the same as the values in the version 4.2/3.4

database.
Version 5 Column Version 4.2/3.4 Column Notes
Keyset.Name Keyset.Name
Keyset.Password Keyset.Password
Keyset.Factor Keyset.Factor
Keyset.MinMatches -- Set to 3

SureKey.FKKeyset

Must match the corresponding
Keyset.PKKeyset value in the Version
5 database.

SureKey.GuidValue

InstallKey.InstallGuid

SureKey.KeyValue

InstallKey.InstallKey

SureKey.ViolationLimit

InstallKey.ViolationLimit

SureKey.IsRevoked

InstallKey.Revoked

SureKey.CustomerName

InstallKey.CustomerName

LomaCons Installkey

90

Version 5 Column Version 4.2/3.4 Column Notes

SureKey.TrialExpires InstallKey.IsTrial If InstallKey.IsTrial is false, set
InstallKey.TrialExpires SureKey.TrialExpires to NULL,
otherwise set SureKey.TrialExpires to
InstallKey.TrialExpires

KeyUsage.FKSureKey -- Must match the corresponding
SureKey.PKSureKey value in the
Version 5 database.

UsageValidation.FKKeyUsage -- Must match the corresponding
KeyUsage.PKKeyUsage value in the
Version 5 database.

UsageValidation.ValidationDateUtc | KeyUsage.CreatedDate

UsageValidation.Content -- Populate with an empty string N”

Identifier.FKKeyUsage -- Must match the corresponding
KeyUsage.PKKeyUsage value in the
Version 5 database.

Identifier.Name Identifier.Name

Identifier.Value Identifier.Value

Individual Key Import

Individual keys and keysets can be imported from prior versions of InstallKey using the web pages
provided in the Installkey Web application. This feature will automatically be visible in the web user
interface if a prior InstallKey version 3.x or 4.x database is defined and found.

To define the location of the previous database, create a connection string for the InstallKeyPrev database
in the web.config. This database connection string can be defined by manually editing the web.config, or
by creating a connection string in the IIS administration console.

The code block below shows the connection string section from the web.config file. Notice that both the
connection to the InstallKey database and the previous database are defined. (The connection string itself
is specific to your environment.)

<connectionStrings>
<add name="InstallKey" connectionString="Data Source=.. "/>
<add name="InstallKeyPrev" connectionString="Data Source=.. "/>
</connectionStrings>

InstallKey will attempt to connect to the InstallKkeyPrev database only once using the connection string
provided, and will store the result in the web application cache. Because the setting is cached, to get
InstallKey to detect that database, it may be necessary to restart the web application or the application
pool if you make changes to the connection string or database server.

If the database connection is defined correctly, and the database is a version 3.x or version 4.x database,
the Import Key link will be visible on the SureKey Maintenance page.

LomaCons InstallKey 91

Keyset and Key Administrati

HOME KEYS TOOLS

Keys S

Sure Keys

Keysets

Commands

MNew iIIe Key

Import Key Link

From the Import Key page, find the key that you want to import from the previous database. When
imported, the key, its usage and identifier values are copied into the InstallKey 5 database. If the keyset
does not already exist in the InstallKey 5 database, the keyset will be imported too.

Note: Keysets are unique, even when the keyset name is the same. Do not create the keyset in InstallKey 5. Rather you should allow

InstallKey to import the keyset. When the first key of a keyset is imported, the keyset will be imported automatically with the same
keyset factor and password as was defined in the previous version.

LomaCons InstallKey 92

20. Future Enhancements

Many additional new features and customizations are planned for future releases. Any additional
requests for new features or enhancements can be made by contacting LomaCons. See
www.lomacons.com for information on how to contact LomaCons.

LomaCons Installkey

93

21. Development Methodology and Goals of Version 5

Version 5 was a major retooling and refactoring of InstallKey to benefit InstallKey developers and
application integrators, targeting both current developers and new developers. The goals of the first
release of version 5 were as follows. Many of these continue to be guiding principles for current a future
releases of InstallKey.

Make InstallKey easy to use for those new to InstallKey Validation

We want to ensure that those who begin to use InstallKey can start working with it right away, with just a
small learning curve. It should take no more than a few minutes for someone new to InstallKey to get the
application installed and start working with it.

Update InstallKey to use modern Microsoft .Net framework tools and technologies
This included dropping the old .asmx web services in favor of modern WCF services. Also dropped was
support for older versions of Windows and SQL Server.

Make the difficult features easy

One of the most difficult features to use from prior versions of InstallKey was the custom properties and
the API. Version 5 makes adding custom properties easy, and does not require the software integrator to
write any custom code or ascx user interface components which were difficult to develop and deploy.

Another difficult feature from prior version was the API. The new InstallKey API is integrated directly into
the client side dll as simple to use method calls. This encapsulates the web service call so that the
software integrator does not need to directly reference and manipulate complex web services.

Make installation, deployment and configuration easy

For this, a single web application that hosts the validation service and the key management website was
chosen as the new deployment model. The multiple web applications, and odd configuration settings
from prior versions is gone. InstallKey 5 is simple to understand and uses commonplace patterns and
practices.

Realistically support an unlimited number of keys

The version 5 web application has been rewritten from the ground up to be easier to use, even when
there are thousands or millions of keys. Prior to version 5, the out of the box key administration web
application was lacking. The user interface was difficult to use for more than a few hundred keys, which
meant than many integrators would have to write their own administration tool.

The new user interface is clean and professional, and contains new functionality that allows you to sort,
filter and quickly locate and manage your keysets and keys. Hopefully there will be little need for anyone
to have to write their own key administration user interface with this new version. (Although the ability
to do so using the API will be carried forward, for those software integrators that wants to.)

Stay true to core values of less-is-more, easy and customizable

InstallKey 5 contains many of the same customizations that were available in prior releases. Where
functionality has been initially omitted in version 5, we will be adding ways to implement these soon. The
best part about this new version is that the break from prior versions will allow future changes to be
implemented and released quicker.

Provide an upgrade path and backward compatibility as best as possible

The significant differences in .Net over the years, and a desire to modernize InstallKey have resulted in
some breaking changes. Although not fully backward compatible with prior versions, there is an upgrade
path that will allow you to carry your keysets and keys from Version 3.4 and 4.2 forward into version 5.

LomaCons Installkey 94

22. Product Support and Contact Information

All product support is provided by web and email.

Frequently Asked Questions

Frequently asked questions and FAQs can be found at http://www.lomacons.com.

Email Support

Support for InstallKey can be sent to support@lomacons.com. In most cases, you should receive a reply
by the next business day or sooner.

Sales and Information
Product sales can be reached by email at support@lomacons.com.

LomaCons Installkey 95

http://www.lomacons.com/

